S&M Young Researcher Paper Award 2020
Recipients: Ding Jiao, Zao Ni, Jiachou Wang, and Xinxin Li [Winner's comments]
Paper: High Fill Factor Array of Piezoelectric Micromachined
Ultrasonic Transducers with Large Quality Factor

S&M Young Researcher Paper Award 2021
Award Criteria
Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 33, Number 7(2) (2021)
Copyright(C) MYU K.K.
pp. 2427-2444
S&M2628 Research Paper of Special Issue
Published: July 15, 2021

Output Power Control Using Artificial Neural Network for Switched Reluctance Generator [PDF]

Supat Kittiratsatcha, Paiwan Kerdtuad, and Chanin Bunlaksananusorn

(Received January 31, 2021; Accepted June 14, 2021)

Keywords: switched reluctance generator, output power control, output power estimation, conduction angle estimation, artificial neural network

We propose an output power control of a variable-speed switched reluctance generator (SRG) by implementing an artificial neural network (ANN) in the control loop. In the high-speed operation with single pulse mode, the phase current waveform, and subsequently, the output power, depend on the conduction angles. The conduction angles, i.e., the turn-on and turn-off angles, can be determined by the proposed method using an ANN. A dynamic model of an SRG with eight stator poles and six rotor poles is used for simulation to obtain the output power profiles, which subsequently become the ANN training data. The inputs of the ANN are the reference value of the output power and the rotor speeds, while the outputs of the ANN are the turn-off and turn-on angles. The control algorithm is implemented by integrating the trained data into the dynamic model using MATLAB. The experimental setup of the SRG is implemented using a digital signal processor (DSP) to control the two-switches-per-phase drive system, which includes highly accurate phase current and dc-link voltage sensor circuits. The trained biases and weights of the ANN are also coded in the DSP. To validate the proposed method, comparisons are made between simulation and experimental results.

Corresponding author: Supat Kittiratsatch

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Supat Kittiratsatcha, Paiwan Kerdtuad, and Chanin Bunlaksananusorn, Output Power Control Using Artificial Neural Network for Switched Reluctance Generator, Sens. Mater., Vol. 33, No. 7, 2021, p. 2427-2444.

Forthcoming Regular Issues

Forthcoming Special Issues

Special Issue on Intelligent Manufacturing and Application Technology Part 1
Guest editor, Cheng-Chi Wang (National Chin-Yi University of Technology)
Call for paper

Special Issue on Smart Sensing Technologies and Their Application in Forest Management and Engineering
Guest editor, Byoungkoo Choi (Kangwon National University)
Call for paper

Special Issue on Sensors, Materials, and Computational Intelligence Algorithms in Robotics and AI Engineering
Guest editor, Pitikhate Sooraksa (King Mongkut’s Institute of Technology Ladkrabang)
Call for paper

Special Issue on Microfluidics and Related Nano/Microengineering for Medical and Chemical Applications
Guest editor, Yuichi Utsumi (University of Hyogo)
Call for paper

Special Issue on International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2019 (Bio4Apps 2019) (2)
Guest editor, Hirofumi Nogami and Masaya Miyazaki (Kyushu University)
Conference website

Special Issue on High-sensitivity Sensors and Sensors for Difficult-to-measure Objects
Guest editor, Ki Ando (Chiba Institute of Technology)
Call for paper

Copyright(C) MYU K.K. All Rights Reserved.