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 With the increasing incidence of autism spectrum disorders (ASDs), the physical and mental 
status of patients and the economic burden on their families have become a major concern. 
Individuals with ASD exhibit diverse motor characteristics. The combination of contactless 
visual sensors and computer vision (CV) technology allows the noncontact and long-term 
monitoring of these characteristics to extract valuable quantitative information. Therefore, in 
this paper we systematically review CV technology using visual sensors to obtain motion 
information from individuals with ASDs with the aim of exploring the application of noncontact 
perception systems in the diagnosis and treatment of autism. (1) A systematic review of 
publications indexed on Web of Science, PubMed, and Engineering Village and studies 
published from January 2015 to March 2023 was conducted. (2) Different publicly available 
datasets were reviewed to accelerate related research. (3) We summarized the above research 
results in tables and analyzed the research status, open challenges, and future perspectives. The 
results of this review show that the use of visual sensors to capture human movement information 
has wide application value in the diagnosis and treatment of autism.

1. Introduction

 The incidence of autism spectrum disorders (ASDs) is increasing yearly worldwide, which 
has rapidly developed into a global public health crisis. The social function of children with a 
long-term chronic course of the disease has varying degrees of impairment. However, the early 
intervention rate is low owing to the severe lag in the early screening, diagnosis, and treatment 
of autism.(1) The long early intervention period for children with autism and the high cost of 
diagnosis and treatment have a severe economic burden on many families. In addition, the 
serious imbalance between professional caregivers and patients has also brought tremendous 
work burdens and pressure to practitioners. These limitations and the increasing prevalence of 
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ASDs require the development of more automated and accurate sensing systems to reduce 
rehabilitation costs and evaluation time.
 Because autistic people have diverse motor characteristics, observing and analyzing 
children’s natural movements can help in the early detection of risk. ASD diagnostic features fall 
into two main categories: (1) persistent deficiencies in social communication and social 
interaction in multiple settings,(2) i.e., patients lack direction, response, and sharing in social 
communication, which may be accompanied by poor integration of body postures,(3) and (2) 
restricted and repetitive behavior, interest, or activity patterns.(2) Some prominent signs are hand 
slapping, body swaying, rotation, repetitive jumping, and finger flicking.(4) Associated features 
of ASDs are divided into three categories: motor deficits, disruptive/challenging behaviors, and 
catatonic motor behavior.(2)

 In medical environments, contactless visual sensors primarily include RGB cameras and 3D 
depth cameras, which offer a cost-effective and straightforward approach to capturing children’s 
behavioral patterns in a noninvasive and continuous manner over time. In contrast, wearable 
devices can restrict the movements of children with autism and even trigger anxiety and self-
stimulatory behaviors.(5) Furthermore, wearable devices cannot detect external assistance or 
interactions with the physical environment.(6) In recent years, with the widespread application of 
computer vision (CV) techniques in various fields,(7,8) there has been a noticeable increase in the 
amount of research utilizing patients’ motion information for automatic quantitative analysis. 
The combination of visual sensors and CV technology enables the noncontact and long-term 
monitoring of autism risk signals while providing objective quantitative evidence.(6)

 Recent reviews and articles have demonstrated the utility of such tools in individuals with 
ASD. De Belen et al.(9) and Sadek et al. (5,10) introduced CV to capture and quantify various 
information in ASD diagnosis. To automate the assessment of motor impairments in ASD, 
Thomas et al.(11) systematically explored computational methods, including devices such as 
accelerometers for contact-based measurements. Unlike previous work, we explore the feasibility 
and scope of an autism intelligence system that uses motion information only obtained by 
contactless visual sensors, thereby increasing the complexity of the review process. Furthermore, 
this study encompasses the fields of technology, artificial intelligence (AI) algorithms, and 
autism medicine, further complicating the analysis process. Our main contributions are as 
follows: (1) We design a retrieval method and inclusion criteria for research focused on vision-
based behavior perception and understanding in patients with ASD. (2) We introduce each 
qualified paper according to the category and summarize the information in tables. (3) We 
introduce publicly available ASD datasets that include visual motion information. (4) We analyze 
the research status and summarize the open challenges and future perspectives. 

2. Data, Materials, and Methods

 The research scope of this project is limited to the acquisition of human motion data using 
noncontact devices, where the human motion information does not include eye-tracking and 
facial motion capture. In addition, we provide a summary of the relevant public datasets 
collected during the survey. The co-development and two-way communication between ASD 
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medicine and AI technology has led to valuable results and mature technologies. Considering 
the timeliness of the technology, only relevant literature from January 2015 to March 2023 has 
been systematically reviewed. 
 Information sources and retrieval strategies. To guarantee the quality of reference papers, 
we obtained relevant literature from three traditional channels: Web of Science, PubMed, and 
Engineering Village. These three channels belong to the secondary literature query system, 
which has specific quality requirements for the collected documents. The search strategies are as 
follows: 
(1)  Theme: ‘autis*’ AND (‘movement’ OR ‘behavio*’ OR ‘acti*’) AND (‘visual’ OR ‘vision’ OR 

‘imag*’ OR ‘video’) AND (‘automatic’ OR ‘comput*’ OR ‘engineering’)
(2)  Theme: ‘autis*’ AND (‘movement analysis’ OR ‘behavio* imaging’ OR ‘behavio* analysis’ 

OR ‘acti* recognition’)
(3)  Theme: ‘autis*’ AND (‘movement’ OR ‘behavio*’ OR ‘acti*’); Research direction: Computer 

Science
 Inclusion criteria. The title, abstract, and method of each article were scanned for relevance. 
Specific criteria are as follows: (1) The research object contains autistic patients. (2) Motion 
information was obtained only from contactless visual sensors. (3) Motion information includes 
complete or partial body motions, excluding gaze, facial expressions, and sleep. (4) The 
processing and analysis of information are automated. (5) Results in the form of patents, reviews, 
meta-analyses, keynotes, narratives, or editorials are excluded. (6) Papers are written in English. 
(7) The complete literature can be searched. 
 Data entry. Through the above search process, 63 eligible studies were included. Among 
them, 42 studies were related to diagnosis and 21 were related to intervention. Where possible, 
we extracted the following information from each study into an Excel spreadsheet: (1) the 
intervention or diagnosis method used, (2) the autism characteristics studied, (3) the reference 
number of the paper, (4) the CV task for processing motion information, (5) the specific CV 
method for obtaining motion information, and (6) the sensor configuration for collecting motion 
information. In addition, 13 autism datasets with links to resources were found. 

3. Results

3.1 Related work

 In recent years, with the development of CV technology and patient demand for contactless 
diagnosis and treatment, the use of CV to analyze the motion information of autistic patients has 
increased. In this review, we provide ample evidence of the effectiveness of such techniques in 
(1) identifying and quantifying behavioral markers for the diagnosis and assessment of ASDs 
and (2) constructing unconstrained therapies or adjunct tools.

3.1.1 Autism diagnosis

 CV-based systems provide a low-cost and noninvasive diagnostic method and can reduce the 
errors associated with human factors in decision-making.(5) According to the characteristics of 
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the autism category and the corresponding research situation, the relevant works are divided into 
social behavior disorder, atypical behavior (not limited to social influence), motor deficits, and 
abnormal body posture. Studies related to autism diagnosis are summarized in Tables 1–3, and 
each quantified information is described in Sect. 2.

3.1.1.1 Social communication and social interaction

 By quantifying the motion information generated during social interactions, the extent of 
impaired interpersonal behavior coordination in subjects can be objectively assessed, aiding in 

Table 1
Related works on social communication and social interaction.

ASD characteristic Ref. CV task Specific methods Sensor placement: 
number of sensors

Pointing behavior
12 3D pose estimation Microsoft Kinect SDK Kinect: 1

13 Quantification of 
hand movement YOLOv3, ResNet-18, OpenPose RGB camera: 1

Response to name

14 Quantification of 
head movement

PCA, face detection/alignment, 
head pose feature extraction RGB camera: 1

15 Quantification of 
head movement CVA Tablet camera: 1

16 Quantification of 
head movement IntraFace Tablet camera: 1

17 Quantification of 
head movement IntraFace, tracking facial landmarks Tablet camera: 1

18 Gesture recognition VGG16/SSD RGB camera: 2; 
Kinect: 1

19 Quantification of 
head movement YOLOv3, HRNet, OSNet, OpenFace RGB camera: 4

Response to 
instructions

20 Quantification of 
head movement SSD Logitech BRIO: 2; 

Kinect: 1
21 Action recognition OstAD, YOLOv5, I3D RGB camera: 3

Atypical attention 22 Quantification of 
head movement CVA Tablet camera: 1

Movement synchrony 23 Gesture assessment, 
action recognition MMSN No relevant 

introduction

Atypical behaviors

3 Quantification of 
motor patterns MEA RGB camera: 1

25 Motion feature 
extraction

OpenPose, Gaussian mixture model, 
bidirectional long short term memory 

neural network
RGB camera: 2

26 Action recognition OpenPose, VGG16-LSTM No relevant 
introduction

27 Quantification of 
head movement OpenPose, SVM

Wireless Ezviz CS-
C2C-1B2WFR 

camera: 4

39 Quantification of 
motor patterns

MEA, NeuroMiner, SVM 
with linear kernel RGB camera: 1
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Table 2
Related works on atypical behaviors (not limited to social).

ASD characteristic Ref. CV task Specific methods Sensor placement: 
number of sensors

Disruptive behaviors 35 Action recognition OpenPose, time-distributed CNN, 
LSTM

Existing dataset 
(SSBD)

Stereotyped behavior

28 Action recognition Kinect for Windows SDK, 
$P Point-Cloud Recognizer Kinect: 1

31 Pose estimation 2D Mask R-CNN Data collected from 
NODA program

32 Action recognition OpenPose Data collected from 
YouTube

33 Action recognition O-GAD No relevant 
introduction

34 Action recognition AlphaPose, 3DCNN /ConvLSTM Collected data, 
equipment not fixed

38 Action recognition OpenPose, LSTM
5 million pixels 

Hikvision remote 
camera: 4

39 Action recognition CSRT, HRNet, RGBPose-SlowFast
Existing dataset 
(SSBD, Autism 

dataset)

40 Action recognition I3D/TSN, weak supervision Existing dataset 
(HMDB51, SSBD)

41 Action recognition CNN, transfer learning Webcam

42 Quantification of 
motor patterns OpenNI/NITE framework Kinect: 1

Table 3
Related works on motor deficits and abnormal body posture.

ASD characteristic Ref. CV task Specific methods Sensor placement: 
number of sensors

Whole body posture

44 Quantification of 
motor patterns MOVIDEA RGB camera: 1

45 Classification
Linear discriminant analysis/logistic 

regression/multilayered perceptron/log-
linearized Gaussian mixture network

RGB-D camera: 1

46 Quantification of 
motor patterns

Mask R-CNN, OpenPose, 
Spearman’s correlation coefficient

No relevant 
introduction

47 Classification OpenPose, SVM RGB-D camera: 1

48 Quantification of 
motor patterns Motognosis RGB camera: 1

49 2D pose estimation Processing software RGB camera: 1

Head posture

50 Quantification of 
head movement Zface RGB camera: 1

51 Quantification of 
head movement CVA Tablet camera: 1

52 Quantification of 
head movement

Dlib-ml, OpenFace, head pose feature 
extraction Tablet camera: 1

53 Quantification of 
head movement OpenFace RGB camera: 1

Hand posture

55 Classification LSTM model RGB camera: 1

56 Classification InceptionV3/ResNet-50, 2-layer LSTM Existing dataset 
(unavailable)

57 Classification Spatial attention bilinear pooling, LSTM Existing dataset 
(ASDD)

58 Gesture assessment OpenCV, cosine similarity formula Mobile camera: 1
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diagnostic analysis. Three standard tests assess social communication and interaction in people 
with autism.
 The first is the Expressing Needs with Pointing Test, in which hand pointing is an essential 
source of reaction information. Wang et al.(12) proposed a detailed protocol to describe this 
clinical task. In this work, mutual gaze and gesture were the primary basis for judging the 
children’s performance. Qin et al.(13) further developed the evaluation method, in which features 
such as hand position, gesture, and pointing direction were detected. The accuracy of this 
automated evaluation system was 17/19, indicating that the directive behaviors expressing needs 
are accurately assessed.
 The second is the Response to Name Test, for which gaze estimation, head posture, and 
shoulder posture are essential sources of response information. Liu et al.(14) proposed a dataset 
and an automated prediction system that considered the response speed, eye contact duration, 
and head direction to output responsiveness scores. Campbell et al.,(15) Perochon et al.,(16) and 
Hashemi et al.(17) employed video stimuli to capture children’s attention. The latter two studies 
recorded the naming response and encoded the response latency. It was found that children with 
autism exhibited a lower response frequency and a longer response time. Wang et al.(18) and 
Song et al.(19) used toys to attract children’s attention. Later work also considered the shoulder 
rotation angle, and the experiment achieved a high classification accuracy of 93.3%.
 The third is the Response to Instructions Test, for which gaze estimation and response action 
detection are the primary sources of response information. Liu et al.(20) proposed a protocol in 
which a clinician asks a child to hand them a toy for interactive play. Shi et al.(21) designed the 
Ost-AD network for the protocol proposed in Ref. 20. This network used temporal attention 
branches to aggregate contextual features and spatial attention branches to generate local frame-
level features of children. Their model achieved more than 70% classification accuracy but still 
needs improvement.
  In addition, studies have shown that, compared with nonsocial stimulation, ASD patients pay 
less attention to social interaction. Bovery et al.(22) used two sides of a screen to display social 
and nonsocial stimuli. Then they detected the subject’s direction of attention by analyzing head 
and iris positions. Difficulties in social interaction with individuals with ASD are also reflected 
in the dynamic temporal connection between the motions of interacting people. Li et al.(23) 
proposed a network that automatically assessed a child’s movement synchronization with a 
therapist. In this network, inflated 3D convolutional neural networks (CNNs) were used for 
feature extraction, and three output heads were used for specific tasks: motion quality 
assessment, motion synchronization prediction, and intervention identification. In addition, the 
authors applied label distribution learning to mitigate the artificial bias in motion synchronization 
estimation. In this work, they produced an outcome comparable to those of standard methods at 
a much reduced cost.
 Some studies used subjects’ behavior during social interaction to determine whether they 
have ASDs. Georgescu et al.(24) used a support vector machine (SVM) with a linear kernel to 
classify high-functioning ASD adults and typical developing (TD) adults. The parameters 
included intrapersonal synchrony between the head and body, which was quantified using 
motion energy analysis and the open-source machine learning tool NeuroMiner. The accuracy of 
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this method was 75.9%. Lin et al.(25) designed a multimodal (speech acoustics and body gestures) 
interlocutor-modulated attention network architecture to differentiate between the three ASD 
subgroups. The motion part was based on gestural features derived from the tracked body joints 
of each frame. The network achieved an unweighted average recall rate of 66.8%, which could 
be improved. Kojovic et al.(26) distinguished children with ASD from children with TD using 
skeletal information generated from videos of social interaction. They used a CNN combined 
with long short term memory (LSTM) to classify the action. The input of this architecture was 
an image with a deleted background, not the original key-point coordinates. The accuracy of this 
model was 80.9%. Tang et al.(27) analyzed children’s head movements, facial expressions, and 
vocal features under different attitudes toward their mothers. The accuracy of the SVM classifier 
was more than 90%.

3.1.1.2 Atypical behaviors (not limited to social)

 Stereotyped movements are semi-voluntary repetitive movements, a prominent clinical 
feature of ASDs. The head, wrist, elbow, and shoulder joint are the key points in their 
investigation. Maha et al.(28) automatically detected atypical motions using point clouds. This 
method only considers spatial information, but temporal information is also an important 
reference factor in behavior recognition tasks.(29,30) On this basis, Kathan et al.(31) and Cook et 
al.(32) calculated movement information. In contrast to the manually designed time features, Tian 
et al.(33) used a 3D CNN to generate shared time feature maps from videos automatically. They 
proposed a new time pyramid network to mine features at different semantic levels. These 
features were used for tasks of varying granularity: short-term ASD-related action detection and 
long-term repetitive behavior recognition. Negin et al.(34) used LSTM to learn the temporal 
evolution of skeleton sequences and emphasized the importance of detecting children’s behavior 
in an uncontrolled environment. Compared with human-designed features, auto-encoded 
features have better generalization. In addition to analyzing trunk and limb movement 
information, some studies evaluated patients using head or hand movement information. Head 
banging is one of the stimming behaviors of autistic patients, which harms the patients 
themselves and needs timely outside intervention. Accordingly, Washington et al.(35) designed a 
skeletal CNN-LSTM network and achieved a mean F1-score of 90.77% for recognizing head 
banging behavior. Hand motion complexity is associated with limiting repetitive and stereotyped 
behavior; diversity is associated with behaviors critical to independent living.(36) Zhang et al.(37) 
proposed a strategy for applying gesture recognition to skeletal datasets to explore subfeatures. 
They compressed the middle layer output feature map using an hourglass-structured 
convolutional network, which was then mapped to classified subfeatures.
 For uncontrolled environments, some studies considered the behavior detection of multiple 
people. Zhang et al.(38) matched the distance between current and previous skeletons to track 
various children with ASDs in the same scene. Pandian et al.(39) initialized the tracker using 
manually annotated initial frame bounding boxes. In this work, they fed raw video signals and a 
skeletal joint thermal map into the proposed depth network. Lack of data is another common 
problem with deep neural networks. Accordingly, Pandey et al.(40) proposed a technique called 
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guided weak supervision. In this work, they utilized optical flow frames for category matching 
because the optical flow transform covers most nonmotion-related information and exaggerates 
the motion information.
 As a diagnostic feature of autism, repetitive behavior has many reference values in ASD 
medicine. First, the assessment of repetitive behaviors plays a crucial role in the prescription of 
medication dosages. To address the issue of needing continuous monitoring with abnormal 
behavior checklist, Prabha et al.(41) used deep convolutional networks and transfer learning to 
assess the repetitive behaviors of children with ASD. The method was validated by drug 
temperature regulation in children with autism. In addition, stereotyped behavior may be 
associated with lower mental health. Camada et al.(42) proposed the use of machine learning 
algorithms to identify repetitive behaviors and determine appropriate activation levels. Adaptive 
neural fuzzy technology based on the fuzzy C-means algorithm was used to determine the 
activation level of stereotyped behavior.

3.1.1.3	 Motor	deficits	and	abnormal	body	posture

  Motor difficulties in individuals with ASD can be quantified and treated. It is suggested that 
efforts aimed at detecting and intervening in motor function may also positively impact social 
communication.(43) Motor deficits are potential early markers and predictors of ASD diagnosis. 
Accordingly, Caruso et al.(44) and Hirokazu et al.(45) evaluated the free movement of infants at 
high risk of ASD. They revealed that the signs of ASD risk could be detected as early as four 
months after birth by focusing on the infant’s spontaneous bodily movements. In addition, Zhao 
et al.(3) used image differencing technique to extract motion time series from video records. 
Then they performed spectral analysis to quantify the average power of motion and the fractal 
scaling of movement. Jin et al.(46) quantified pixel distance and instantaneous pixel velocity as 
motion features of ASD children. Mariano et al.(47) studied changes in body movement tracked 
by depth sensor cameras under visual, auditory, and olfactory stimuli in a multimodal virtual 
reality (VR) experience. The authors characterized the level of movement by calculating the 
average displacement of the joints, achieving an accuracy of 89.36%. Owing to the prioritization 
of early diagnosis and treatment of autism, there is little information about motor function in 
adult ASDs. On this basis, Cho et al.(48) proposed motion tests for adult ASDs and analyzed the 
depth data to obtain the performance of standing, walking, and repetitive movements. 
 Postural control is a motor ability developed in childhood, which is reflected in maintaining 
stable head and body posture without excessive rocking. Children with autism often have a high 
deviation angle characteristic. Khan et al.(49) used the humerus as the baseline and measured the 
angle of the arm moving outwards in a regular standing position. Moreover, children with ASD 
may use head movements to regulate their perception of social situations. Martin et al.,(50) 
Dawson et al.,(51) and Babu et al.(52) obtained head motion data by calculating facial feature 
points, while Zhao et al.(53) focused on temporal change descriptors extracted from head motion 
feature sequences. The results showed that the ASD group had significantly higher levels of 
pitch (head point), yaw (head turn), roll (head roll), head rotation range, and average rotation per 
minute in their head movement and that the degree of head motion was not positively correlated 
with the interlocutor’s visual gaze. 
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 Even in the initial stages of gestures, motor behavior is embedded with information about its 
intention to perform.(54) Some researchers have investigated how ASDs affect intentionality in 
the initial stages of gestures. Andrea et al.(55) and Pandya et al.(56) used pretrained GoogleNet 
with LSTM to classify ASDs. The former proposed a new dataset including matched-IQ ASD 
and TD children. Two groups of children were required to grab a bottle and perform four 
different follow-up actions: placing, pouring, passing to pour, and passing to place. Using the 
same dataset, Sun et al.(57) proposed bilinear pooling of spatial attention to enhance spatial 
information extraction without significantly increasing the number of parameters, which can 
dynamically and effectively focus on more discriminative regions. The average accuracy of this 
work reached 82.56%. On the other hand, rare signs of neurological disorders in the hands of 
autistic people, such as small gaps, are seen as the first signs of autism. Shushma et al.(58) used 
OpenCV for 2D posture detection and then the cosine similarity formula to distinguish the gap 
between fingers. However, the effectiveness of this work needs to be further verified.

3.1.2 Autism intervention

 In this part, we introduce relevant work from two perspectives: (1) noncontact therapy 
methods popular in recent years, namely, game-assisted therapy, music-assisted therapy, and 
robot-assisted therapy, and (2) the participation and psychological state of the patient in the 
treatment process. The intervention studies on autism are summarized in Tables 4 and 5, and 
each quantified information is described in Sect. 2.

3.1.2.1 Rehabilitation games

 Rehabilitation games are effective in improving children’s physical and cognitive skills while 
giving them a lighthearted experience and are therefore seen as an effective treatment for 
children diagnosed with ASD.(59) Motion-sensing games are the main form of rehabilitation 
games. Kinect usually outputs 3D coordinates for subsequent interaction detection and action 
recognition. Piana et al.(60) developed a game prototype in which children were asked to guess 
the emotion or express the sentiment with postural body gestures. They used the EyesWeb and 
PADDLE machine learning libraries to learn hectographs and adaptive descriptors from 3D 
motion data and finally identified body emotions by a linear SVM. Ma et al.(61) and Wang et 
al.(62) used somatosensory games to test motor function coordination. In the games, touch 
detection and motion recognition of the body and props on the screen were performed by 
calculating 3D coordinate points obtained by Kinect.
 Augmented reality (AR)/virtual reality (VR) can bring teaching situations to different places 
and contribute to innovation of the teaching paradigm. Ahlers et al.(63) proposed an AR computer 
interaction system based on speech and gesture interaction that aimed to improve children’s 
cognitive abilities and reduce the burden on teachers. Unlike VR, where participants have to 
wear special glasses, the immersive 3D VR environment allows participants to literally walk 
into the training environment. This helps children with ASD concentrate and feel a sense of 
stability. Accordingly, Tsai et al.(64) used a third-person perspective role-playing game to teach 
social skills and help deepen understanding of basic emotions.
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Table 4
Related works on autism intervention.
Intervention 
method

ASD 
characteristic Ref. CV task Specific methods Sensor placement:

 number of sensors

Rehabilitation 
games

Comprehensive 
abilities

60 Recogntion of 
emotions EyesWeb, PADDLE, SVM Kinect: 1

61 Pose estimation Microsoft Kinect SDK Kinect:1
63 3D pose estimation Microsoft Kinect SDK RGB camera: 1; Kinect: 1

Motor deficits 62 Quantification of 
motor patterns Microsoft Kinect SDK RGB camera: 1; Kinect: 1

Emotion 
recognition 64 3D pose estimation Microsoft Kinect SDK RGB camera: 1; Kinect: 2

Music therapy
Motor deficits

67 3D pose estimation OptiTrack Kinect: 1

68 Quantification of 
motor patterns

Gesture tracking 
algorithm, gesture 

parameters detection 
algorithm

RGB camera: 1

Comprehensive 
abilities 69 Quantification of 

motor patterns
Microsoft Kinect SDK, 

MEA
Kinect: 1;

GoPro camera: 1

Robot-assisted 
therapy

Motor deficits 73
Estimation of 

rhythmic motion 
timing

OpenPose, RNN, FFT USB monocular camera: 1

Posture imitation

76 Action recognition Rule-based finite state 
machine Kinect: 1

77 Action recognition Sensory-motor association 
paradigm Robot visual sensor

78 Quantification of 
motor patterns

Microsoft Kinect SDK, 
HMM, GMM RGB camera: 2; Kinect: 1

Atypical 
behaviors

83 Quantification of 
head movement

Original conditional local 
neural field Tablet camera: 1

84 Action recognition 3D MTG Kinect: 1

85 Action recognition Nuitrack SDK, CNN Intel Real Sense 3D 
sensor: 1

Table 5
Related works on engagement.

Intervention method Ref. CV task Specific methods Sensor placement: 
number of sensors

Rehabilitation 
training 87 3D pose estimation Microsoft Kinect SDK, SVM Kinect: 1

HD camera: 1

Neurofeedback 
therapy 88 Quantification of 

motor patterns

SSD, local binary pattern, 
active appearance model, PnP, 

image gradient random forest classifier
Webcam

Robot-assisted 
therapy

90 Quantification of 
motor patterns OpenPose Monitor camera: 1

91
2D pose estimation, 

hand pose 
estimation

OpenPose, E4 ACC Robot’s visual sensor

92 Action recognition Neural networks, transfer learning Existing dataset 
(unavailable)

93 Quantification of 
motor patterns OpenFace Robot’s own visual 

sensor
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3.1.2.2 Music therapy

 Music therapy (MT) can transfer skills developed in music-based experiences to other areas 
of life. Active music composition and musical engagement are valuable for improving attention, 
memory, and verbal communication in children with ASD. In addition, research has shown that 
MT effectively reduces anxiety and aggression in people with ASD.(65) Movement sonification 
can promote the multisensory integration of perception and self-motion.(66) On this basis, a 
common form of MT uses recognized movement information as a signal to control the music, 
with the movement itself a critical factor in the performance. Ichinose et al.(67) described a novel 
system that links Kinect and an electronic instrument called Cyber Musical Instrument with 
Score to provide MT. Magrini et al.(68) designed two different versions of the system for 
controlled and home environments. Image segmentation is used in the version for a controlled 
environment to obtain a binary human body image, in which a binary raster matrix and tracking 
algorithm are used to obtain the pose parameters. The version for a home environment uses the 
Microsoft Kinect Software Development Kit (SDK) library to extract the 3D coordinates of 
skeletal joints, upon which geometric transformations are performed. Both versions connect the 
acquired action parameters with the sound parameters. Ragone et al.(69) designed an interactive 
music system that captures the interactive movements of individuals using Kinect v2, then 
converts them into sound. This system can encourage synchronous movement between autistic 
children and counselors through an MT environment.

3.1.2.3 Robot-assisted therapy

 Robots have become promising tools for aiding rehabilitation and daily skill development in 
the medical field.(70,71) It has been shown that autistic people can practice life skills more 
effectively when interacting with robots than with humans.(72) Learning to notice and adequately 
assess time is a critical first step in improving social skills in children with autism. Ma et al.(73) 
combined MT with robots to estimate the rhythmic cycle of children’s movement in a robot-
based MT process. To achieve this, they combined recursive neural networks with the fast 
Fourier transform (FFT), thereby reducing the average offset error and transient delay. 
 A more common form of robot-assisted therapy is posture imitation, which can foster the 
development of empathy, one of the most crucial social skills. One of the main features of ASD 
is a decreased ability to mimic body movements, which is often associated with damage to the 
mirror nerve cell system.(74) Lidstone et al.(75) compared motor imitation scores computed from 
human observation coding (HOC) methods with those obtained from a fully automated 
OpenPose 2D computer-assisted movement intervention (CAMI) method and a Kinect 3D 
CAMI method. It was found that HOC had the lowest discrimination ability and Kinect 3D 
CAMI had the greatest ability. In addition, some specially designed action feature extraction 
methods have been designed for this task. Zheng et al.(76) developed a rule-based finite state 
machine to reduce the complexity of computation and the difficulty of generating a training 
dataset. Guedjou et al.(77) proposed a neural network architecture based on a sensorimotor-
association paradigm, with visual feature detection based on an attentional vision mechanism 
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committed to sequentially exploring salient points in images. Taheri et al.(78) used a state-image-
based algorithm and a hidden Markov model combined with a Gaussian mixture model to 
recognize sequential patterns. Tunçgenç et al.(79) designed an algorithm based on metric learning 
and dynamic time warping that automatically detected and evaluated the critical joints and 
returned a score by considering the spatial position and timing differences between a child and 
the model. Ivani et al.(80) and Fassina et al.(81) used residual neural networks to identify actions, 
where the former represented an action sequence as an image, retaining the original time 
dynamic information and spatial structure information, whereas the latter, through the analysis 
of the subject’s kinetic parameters, shaped the beginning and conclusion of each gesture.
 To enrich the interaction between robots and users, robots must receive feedback from user 
actions.(82) Marco et al.(83) proposed a technical framework capable of analyzing and integrating 
multiple visual cues involving face detection, landmark extraction, gaze estimation, head 
posture estimation, and facial expression recognition, which resulted in accurate head pose 
estimation by exploiting the information provided by the conditional local neural field. Haibin et 
al.(84) extracted 3D movement trends and geometric properties from upper-body joints to 
recognize the behavior of children with ASD. Silva et al.(85) trained a CNN with different 
behaviors to classify different behavior patterns using extracted coordinates of the joints of 
users.

3.1.2.4 Emotional state and engagement during treatment

 Engagement is one of the key measures used to assess the impact of therapeutic interventions 
on children. Poor patient participation may affect training outcomes, especially social skills 
training for people with autism.(86) On this basis, Dang et al.(87) proposed a new classification 
framework for rehabilitation training activities for autistic children. Motion and 
electroencephalogram features were integrated into two SVMs to perform frame-based 
classification for children’s motor and psychological assessments. To determine the attention of 
autistic children attending neurofeedback therapy courses, López-López et al.(88) proposed an 
automated pipeline to obtain head postural features and central position features of children’s 
eyes. As shown in Fig. 1, the CV pipeline took video frames as the input, extracting relevant 
features through face detection, face recognition, facial vital point detection, head posture 
evaluation, and eye positioning. Most of the proposed automated methods for subject attention or 
engagement are similar to this pipeline. 
 Measuring the child’s engagement is crucial to maintaining the interaction of a social robot 
with the child. Anzalone et al.(89) proposed measures to describe a child’s behavior in terms of 
body and head movements, gazing magnitude, gazing direction (left vs front vs right), and 
kinetic energy. Javed et al.(90) and Rudovic et al.(91) designed a multimodal child participation 
model. The former included affective engagement (displayed through eye gaze focus and facial 
expression) and task engagement (determined by the level of physical activity), whereas the latter 
used a multimodal audio, video, and autonomic physiology dataset. To further personalize the 
model for each child, the context layer incorporated demographic variables and an expert-
assessed childhood autism rating scale. Although engagement is widely used, the relevant 
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datasets are often small and context-specific. Accordingly, Rakhymbayeva et al.(92) used transfer 
learning to improve the classification accuracy of the Qamqor dataset through the PInSoRo 
dataset. In addition, how the robot’s behavior triggers the child’s behavior is essential reference 
information. Lytridis et al.(93) explored this correlation through head pose recognition. They 
regarded it as a pattern classification problem because they assumed that a child is engaged only 
if its head is directly oriented toward the robot.

3.2 Relevant datasets

 To enable CV technicians to carry out related work, we next summarize the publicly available 
autism datasets discovered during the investigation. 

3.2.1 Social communication and social interaction dataset

 Multimodal Dyadic Behavior Dataset (MMDB).(94) This is a collection of multimodal (video, 
audio, and physiological) recordings of infants’ and toddlers’ social and communicative 
behaviors during semistructured play with an adult. This dataset contains the children’s social 
attention, interaction, and nonverbal communication.

3.2.2 Self-stimulatory behavior datasets

(1)  Self-Stimulatory Behavior Dataset (SSBD).(95) This unstructured dataset contains home 
videos of three self-stimulating behaviors in children with autism: head banging, spinning, 
and hand clapping. The authors time-stamped all three behaviors in the videos. The dataset 
was extracted from public domain videos posted on video-sharing sites such as YouTube, 
Vimeo, and Dailymotion.

(2)  Expanded Stereotype Behavior Dataset (ESBD).(34) This dataset was collected from public 
social media channels and consists of videos demonstrating four behaviors. Compared with 
SSBD, this dataset includes one more behavior (finger movement), and contains almost twice 
the number of videos. In the two datasets, there are no identical videos.

(3)  3D-Autism Dataset (3D-AD).(96) This dataset is the first 3D dataset available online for 
research on the 3D recognition of complex and repetitive behaviors of autistic people. This 
dataset contains these actions (from simple to complex): hands on the face, hands back, 

Fig. 1. (Color online) CV pipeline in automatic coding system.(88)
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tapping ears, head banging (or rocking back and forth), flicking, hands stimming, hand 
moving front of the face, toe walking, walking in circles, and playing with a toy from/to 
different positions repetitively. Each action has been repeated for at least 10 times with non-
autistic people. 

(4)  YouTube ASD.(32) The videos in this dataset were collected from publicly available files on 
the YouTube video platform. The videos focus on stimming behaviors, which are often fast 
and atypical, such as clapping, spinning, jumping or swaying back and forth, repetitive play, 
and fiddling with toys/objects. This database can be accessed via the original post on the 
YouTube platform and provides the start and end frame numbers for each selected sequence.

3.2.3	 Motor	deficit	datasets

(1)  Autism Spectrum Disorder Detection Dataset (ASDD).(55) The dataset comprises 1837 video 
recordings of children with ASD and TD children, showcasing four different actions: placing, 
pouring, passing to pour, and passing to place. Each video was shot from a side view using a 
camera. The video sequence of the moment the hand grabs a bottle is precisely trimmed, with 
the adjacent sections removed. The dataset was designed to classify pathological and healthy 
subjects by their differences in performing simple motor behaviors.

(2)  Prospective Motor Control in Autism Dataset.(97) This dataset is similar to the previous one. 
A near-IR camera motion capture system was used to track and record grab kinematics, with 
six cameras placed 1.5–2 m from the table.

(3)  Gait and Full Body Movement Dataset of Autistic Children.(98) The creators of the dataset 
aimed to diagnose AD on the basis of gait and body movement analysis. Kinect v2 was used 
to create a 3D dataset, which includes 3D joint positions, a joint trajectories video, a skeleton 
movement video captured by Kinect v2, and color videos captured by a Samsung Note 9 
camera. 

(4)  19-Gestures Dataset.(80) This dataset contains gestures from 22 subjects (nine healthy 
children and 13 adults), three of whom have ASD. The raw dataset was manually segmented 
and split into training, validation, and test sets through a leave-P-out subject cross-validation 
to isolate each gesture.

3.2.4 Robot-assisted therapy datasets

(1)  Multi-Modal Dataset of Children with Autism (MDCA).(99) The dataset includes (1) video 
recordings of facial expressions, head and body movements, and gestures of children, (2) the 
autonomic physiology (heart rate, electrodermal activity, and body temperature) of the 
children, and (3) audio recordings. The data are from 35 children with different cultural 
backgrounds. 

(2)  DE-ENIGMA Dataset.(100) This dataset is a multimodal (e.g., audio, video, and depth) 
database of recordings of 803 utterances from 14 autistic children aged 4–10 years during 
Wizard-of-Oz interactions with a humanoid robot. Experts annotated information regarding 
emotional valence, arousal, audio features, and body gestures. 
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(3)  DREAM Dataset.(101) In this dataset, half of the children interacted with the social robot 
NAO, while the other half interacted directly with a therapist. Both groups followed the 
applied behavior analysis protocol. The publicly available version of the dataset comprises 
body motion, head position and orientation, and eye gaze variables, all specified as 3D data 
in a joint frame. In addition, metadata containing participants’ age, gender, and autism 
diagnosis variables are included.

3.2.5 Engagement (in MT) dataset

(1)  Multimodal Synchrony Dataset (M-MS).(102) For this dataset, multimodal data from a total of 
41 sessions (578 min) of MT were collected. The data include electrocardiographic signals, 
video recordings, behavioral coding, and participants’ information. To reflect the different 
prevalences of ASD according to gender, the study involved 19 male and two female autistic 
children.

 The datasets mentioned above cover various behaviors and application scenarios of ASDs, 
providing data support for CV researchers lacking medical assistance. Among them, five 
datasets(94,98,100–102) provide multimodal information, which aids in expanding research content. 
Three datasets(96,98,101) contain joint 3D coordinates, which help simplify the workflow. Two 
datasets(32,95) were collected from public platforms, contributing to enhanced system robustness. 
The MDCA dataset(99) contains data on participants from different cultural backgrounds, 
helping improve the generalizability of models. However, owing to the ongoing development of 
research methods, the datasets cannot be generalized to all studies.(103) Furthermore, the subjects 
exhibit distinct individual characteristics, and research results achieved with these datasets 
require further verification before their practical application.(104) 

4. Discussion

4.1 Research status

 We have systematically reviewed the indexed literature from January 2015 to March 2023 on 
the general use of CV technology based on motion information collected by noncontact devices 
in autism research. We found that the studies employing noncontact vision sensors have an 
extensive range of application prospects, and there have been many outstanding works on 
diagnosis and treatment. Such sensors can also obtain accurate information, such as motion 
speed, acceleration, and symmetry, through postprocessing.
(1)  Notable research directions. In work related to the diagnosis of autism, insufficient 

attention has been paid to motor defects. Although motor deficits are features associated with 
autism in the medical field, they are correlated with core autism symptoms and broader 
functions during the entire development of ASDs. Regarding autism treatment and assistance, 
humanoid social robots are the most promising assistance tool, among which NAO is a 
commonly used robot, which can be employed not only to cultivate the social communication 
ability of ASD children but also in postural imitation.
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We also found three noteworthy directions of research in our literature review: (1) A 
multimodal approach.(91) Autism is a complex condition, and a multimodal approach achieves 
better results than a single-mode approach by combining the knowledge of different modes. 
Standard multimodal information includes video, voice, physiological signals, and expert 
scores. Moreover, demographic variables such as patient ethnicity and gender are also 
helpful. (2) Multiple scenes.(32) Currently, most methods based on CV have specific 
requirements on the scene, and technologies robust to the background and other interfering 
factors can be extended to home applications to facilitate the treatment and monitoring of 
patients. (3) Multiperson tracking.(38,39) A multiperson tracking framework can be used in 
human intervention therapy or free scenes.

(2)  Feature extraction. For data collected from contact-free devices, most research has used 
publicly available tools such as OpenCV, Microsoft Kinect SDK, and an MEA to extract 
further information. The former two combine CV and deep learning and automatically detect 
joint coordinates in the human body, namely, they can be used as posture estimation tools. 
OpenCV includes OpenFace, used to extract facial key points, and OpenPose, used to extract 
key body points. Microsoft Kinect SDK is employed to extract key points of the body with 
higher data quality and accuracy than OpenPose.(69) An MEA uses the differential frame 
technique: it extracts time series motion data using pixel changes in a plane or region. In 
addition, two interesting findings have been obtained from skeleton-based studies. In 
research on recognizing atypical behavior, the key points of the head and neck are often 
removed. People (particularly children with ASDs) tend to look around during treatment 
regimens, and this movement degrades the performance of the recognition algorithm.(81) 
However, in the study of atypical movement patterns, the focus is often on the key points of 
the head. It has been proposed that head movement may potentially provide a new objective 
biomarker for ASD.(53)

(3)  Experimental data. Most studies obtained data through custom experiments. The 
experiments on diagnosis generally referred to an authoritative protocol design, while the 
experiments on therapeutic work tended to test products and had less explicit description of 
the reference protocol. Some studies collected data on public platforms, such as YouTube. 
However, publicly collected data generally face the problem of variable quality. A typical 
exclusive annotation strategy may reduce the tagging rate when annotations are subjective. 
Accordingly, Li et al.(23) allowed the second and third labels for each instance, namely, they 
employed the uncertainty-preserved annotation approach. In addition, some work used 
existing datasets to train models, but these datasets often need to be revised. In this regard, 
data enhancement,(35) weak supervision,(40) and transfer learning have been attempted.(92)

4.2 Open challenges and future perspectives 

(1)  Improve the robustness of suitable CV methods. The ambiguity of identifying movements 
originates from the difficulty of customizing body part movements and many other real-
world problems, such as camera movements, dynamic backgrounds, and severe weather 
conditions.(105) Therefore, the high requirement of existing technology in terms of data 
quality makes data acquisition complex and limits the flexibility of applications.
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(2)  Improve the interpretability of the deep learning algorithm. One of the characteristics of 
deep learning is black-box reasoning, which makes the detection of two problems difficult: 
(1) incorrect data are input during model training, leading to incorrect model construction, 
and (2) the model makes predictions on the basis of training data or prior knowledge, but 
unseen or problem samples result in incorrect predictions. Markus et al.(106) introduced some 
explainable AI methods and proposed a framework for selecting the most suitable one.

(3)  Diagnose autistic people on the basis of multiple symptoms. Autism is a complex 
condition, and ASD is only diagnosed when the characteristic deficits in social 
communication are accompanied by excessively repetitive behaviors, limited interests, and 
adherence to the same objects. Autism shares similar features with other neurodevelopmental 
disorders and often occurs in conjunction with other mental and behavioral disorders that 
develop in childhood. In addition, the symptoms vary with the progression of the disease and 
may be masked by compensatory mechanisms.(2) 

(4)  Further promote the multimodal fusion approach. Most studies have focused on RGB 
data from images or video streams. However, sound and physiological signals contain 
valuable information for diagnosis. In addition, integrating patient characteristics and 
demographic informatics will improve the individualized judgment of models.(91) The 
limitation of multimodal fusion lies in the difficulty of data acquisition and technical design. 
In addition, multimodal data and sample space reduction need to be balanced because a 
larger feature space results in higher demands on a system’s performance and scalability.(107) 

(5)  Improve data sharing. The lack of publicly available large-scale benchmark datasets is a 
common problem in healthcare because protecting patients’ data is paramount. Most studies 
involved self-defined experiments and datasets, resulting in no uniform quantitative criteria 
for comparing results. Therefore, it is necessary to establish standardized experimental 
conditions and collection methods through the participation of clinical experts, similar to the 
National Database for Autism Research,(108) which is highly conducive to data sharing. 

(6)  Improve the ability to learn from big data. Research teams lacking medical support should 
improve their ability to access and use data from public platforms. In data collection, the 
problem of data imbalance or small samples caused by rare events is common. When there is 
an imbalance in the class distribution within a dataset, most predictions will align with the 
majority class. In contrast, features from the minority class will be treated as data noise and 
consequently be overlooked. As a result, the model will exhibit significant bias.(109)

5. Conclusion

 In this review, we explored the research status and prospects for application of motion 
information obtained by noncontact visual sensors in the intelligent diagnosis and treatment of 
autistic patients. To ensure the quality and sophistication of the references, we systematically 
reviewed studies indexed on Web of Science, PubMed, and Engineering Village and published 
from January 2015 to March 2023. We introduced and analyzed every eligible paper before 
comprehensively describing the status of research and problems. To facilitate the work of 
technical personnel, we also summarized the relevant datasets. Our review also has some 
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limitations. Some excellent work may have been excluded due to our research methods. However, 
to our knowledge, this is the first system in a review of artificial intelligence applications for 
autism that solely focuses on motion information acquired through noncontact devices.
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