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	 The present paper contains a review of software methods for linearization.   A 
description is given of the properties of ceramic sensing elements for relative humidity 
sensors.   A realization of a sensor for relative humidity with linearization of the 
characteristic and compensation of the temperature effect has been described as well. 
The use of artificial neural networks (ANNs) is compared with other methods for 
linearization.

1.	 Introduction

	 Sensors play an important role in modern measurement and control systems.  The 
developers of new types of sensor aim to improve their precision and functionality.  
There are many methods of hardware and software compensation for nonlinearities, 
narrowing the error range and improving accuracy.  They include different techniques 
for the linearization of sensor characteristics and reduction of impacts of disturbing 
phenomena. 
	 Generally, the characteristics of sensors are nonlinear and they have to be linearized. 
The linearization is mainly a software approach to improving sensor accuracy.  There are 
different methods for this(1) and they could be classified as follows:
-	 look-up tables
-	 polygonal interpolation
-	 polynomial approximation
-	 cubic spline interpolation
-	 linearization with artificial neural networks (ANNs)
	 Each of these methods has unique features, which are reflected on its software 
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implementation, required processing resources, and the accuracy that can be achieved by 
it. 
	 The look-up table is a method easy to implement.  Pairs of points from the nonlinear 
sensor characteristics and real values of a measured phenomenon are placed in the 
nonvolatile memory.   A microcontroller uses these data pairs for the evaluation of 
measured data.  A disadvantage of this method is that many pairs of points have to be 
used to achieve a suitable accuracy.  This is reflected on the memory size necessary for 
storage of a look-up table. 
	 Polygonal interpolation,(1) as compared with look-up tables, needs fewer points 
to linearize sensor characteristics.   Spaces between each pair of adjacent points are 
interpolated with straight lines.  When the characteristic has a high degree of nonlinearity, 
we need more points to achieve higher accuracy and to reduce errors.
	 Polynomial approximation linearizes sensor characteristics using polynomials.  
The most widely used polynomials are third-order polynomials.   The more nonlinear 
a characteristic and a more local minimums and maximums it has, the higher-order 
polynomials have to be used. 
	 Using spline interpolation, we can build a curve that passes through all of the 
reference points.  The spaces between every two adjacent reference points are represented 
by parabolas. 
	 A very advanced method for linearization is the utilization of ANNs.(2–9)  A neural 
network consists of neurons, grouped in layers.   An artificial neuron resembles the 
functionality of a biological neuron.  The most commonly used ANNs are feed-forward 
networks.(10)  They can be trained using the back-propagation training algorithm.  ANNs 
can be used together with other methods for information processing, such as digital 
signal processing and fuzzy logic.(10)   Interaction between neural networks and fuzzy 
logic takes place when fuzzy logic(11) is used for preliminary data processing before 
feeding the data to a neural network.  The reversed process is also possible. 
	 The main aim of the current paper is to present the linearization of RH sensor 
characteristic and compensation of the effect of temperature on it using an ANN as well 
as to offer a prototype of that sensor. 

2.	 Characteristics of Ceramic Sensing Elements for Relative Humidity

	 One of the trends in the development of relative humidity sensors is based on 
thin-film and thick-film ceramic sensing elements.(12)  They have advantages such as 
small dimensions, not requiring very sophisticated technology for manufacturing, 
comparatively low price and resistance to harsh environments.   This group of 
sensors includes those in which the relative humidity sensing elements are porous 
semiconductive or dielectric ceramic, or ceramic layers, based on one or several oxides. 
These sensing elements show high resistance when the humidity is low, nonlinear 
characteristics, polarization when DC voltage is applied and temperature dependence. 
These features require the development of appropriate conditioning electronics.  Ceramic 
sensing elements can be classified into two groups, depending on the type of electrical 
conductivity, namely, electron conductivity and ion conductivity.
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	 When the sensors are of the ion conductivity type, the decrease in sensing element 
resistance, owing to the increase in humidity depends on the sorption on the sensing 
element surface and condensation of water in the microcapillary of the ceramics.  Sensors 
of the electron conductivity type use the effect of chemisorption.  The molecules of water 
act as donor centers and provide electrons to the ceramics. 
	 The operation principle of ceramic sensors of relative humidity is based on the 
sorption of moisture from the ambient environment.  Changes in the physicochemical 
and electrophysical parameters of sensors are the main factors for the measurement 
of humidity in the environment.   The equivalent electrical circuit of ceramic sensing 
element is complex.  It can be simplified and presented as resistance RH and capacitance 
CH connected in parallel.  The impedance of the circuit, ZH, for frequency f, can be 
formulated as:

	 	 (1)

where .  Depending on the kind of prevailing conductivity, the sensing element 
can act as either a resistive or a capacitive element.
	 Current research focuses on ceramic sensing elements based on TiO2 with 
components synthesized using a conventional ceramic technology.  The constituents 
included in ceramics are PbO and Bi2O3.  The different types of ceramic sensing element 
are synthesized at 1050°C and 850°C (see Table 1).  The dependence of resistance and 
capacitance on relative humidity ( RH=ƒ(H) and CH=ƒ(H) ) are presented in  Fig. 1.
	 Figure 2 shows the basic parts of sensor electronics for signal conditioning.  With 
the help of this electronics, sensor impedance is transformed to DC voltage.  An RC 
generator is used for generation of sinusoidal signals.  The generator works in the range 
from 100 Hz to 10 kHz.  Sinusoidal signals are used to avoid the negative effects of 
polarization.
	 Voltage obtained from the amplitude detector is amplified by a noninverting amplifier.  
Figure 3 shows the humidity-to-voltage ratio of three experimental sensing elements.

3.	 Results and Discussion

3.1.	 Utilization of ANN for approximation of sensor characteristics
	 An artificial neural network consists of neurons.   They can be treated as a set of 
computational objects for parallel data processing.  There are different models of 

Table 1 
Composition and synthesis temperature of experimental samples.

Sample Composition Temperature of synthesis
TO10(1050) 90% mol TiO2 + 10% mol PbO 1050°C
TO10(850) 90% mol TiO2 + 10% mol PbO 850°C
TB5(1050) 95% mol TiO2 + 5% mol Bi2O3 1050°C
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artificial neurons and several types of neural network.  The ANN can be implemented as 
a hardware circuit or a software program.  The structure of an ANN is shown in Fig. 4.
	 To work properly, the neural network must be trained with a set of training data.  The 
sequence of the training process is as follows.

Fig.1.    Relationship of RH and CH with relative humidity.

Fig. 2.    Flow chart of sensor electronics.

			   (a)					     (b)

Fig. 3.    Output characteristic of relative humidity sensor .
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1)	 Training data acquisition.   In our case, we measure the output voltage at several 
points.  These points represent relative humidity achieved using concentrated salt 
solution. 

2)	 The neural network is trained using the Neural Network Toolbox of Matlab.
3)	 The trained network is verified to determin whether it was trained properly.

3.2.	 Linearization of sensor characteristics using neural network
	 Several types of ANN with different numbers of neurons and activation functions 
were examined.  The input data in the training process consist of pairs of voltage values, 
measured at the output of the conditioning electronic circuit and relative humidity values, 
which appear over the surfaces of the hermetically closed solutions of different types of 
salt.  Table 2 includes data for the T010(850) sensing element sample.
	 On the basis of the acquired data set and using the Matlab function for shape-
preserving interpolation, the sensor characteristic was plotted as shown in Fig. 5.
	 Figure 5 shows that the characteristic is nonlinear and the sensor has higher 
sensitivity in the range of the ambient humidity from 50 to 100%.
	 After testing several types of ANN, a neural network with one hidden layer was 
chosen.  The network has feed-forward architecture.  It was trained using the Levenberg-
Marquardt algorithm.   The error after this training was 0.0097.   The chosen network 
has three neurons in its hidden layer and one neuron in the output layer.  The generated 
output data from the network is shown in Fig. 6.
	 The neurons in the hidden layer have a sigmoid function of activation. The outputs 
of neurons can have values between 0 and 1.  The only neuron in the output layer has a 
linear function of activation and the value of its output can vary from minus infinity to 
plus infinity.  Each of the neurons of the hidden layer has one input, where voltage is fed, 
generated by the relative humidity sensor. 
	 The characteristics of ceramic sensing elements depend on ambient temperature.  
Every temperature change leads to a change in the resistance of ceramic elements.  Table 
3 shows the characteristics of a sensing element based on the TO10(850) material in the 
range from 20 to 50°C.  An improvement of sensor accuracy can be achieved only after 

Fig. 4.    ANN structure.
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Fig. 5.    Relative humidity sensor characteristic.

Fig. 6.    Output data generated from trained network.

Table 2
Training data of neural network for T010(850) sensing element linearization.

Uo, [V]   1.018   1.095   1.165   1.26   1.55   2.022   2.51   3.156
RH, [%] 12 33 44 53 64 75 85 97
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the compensation for the temperature effect on sensing element characteristics.
	 To compensate for the temperature effect on the sensor characteristics, we used a 
neural network with 12 neurons in the hidden layer.  Every neuron in the hidden layer 
has two inputs – one for voltage coming from the sensor, and the other for temperature 
coming from a low-cost temperature sensor.  The output layer consists of one neuron.  
The output response of a trained ANN is shown in Fig. 7.

3.3	 Practical realization of a relative humidity sensor
	 In order to apply in practice the results obtained from the linearization of the 
characteristic and compensation of the temperature effect different approaches can be 
taken.  The neural network can be realized using specialized neuron chips, programmable 
logic devices and microcontrollers or DSP processors. 
	 The specialized neuron chips are electronic components dedicated to the building of 
ANN processing systems.  Several firms offer commercial modifications of such devices. 
They have features such as a high computation speed of the neural network and a large 
number of layers and neurons and unfortunately, high price.  Most of these chips are 
designed for implementation of complex neural networks.
	 Using programmable logic devices (CPLD, FPGA) it is possible to build parallel 
structures for data processing, such as ANNs.  Each neuron takes a separate part from 
the programmable logic and working in parallel can achieve a high computational speed.  
Some drawbacks of FPGA are the relatively high price of the chips as well as certain 
difficulties in realizing mathematical operations with real numbers.
	 The third approach for building ANNs is to use microcontrollers or DSP processors.  
Most microcontrollers and DSP processors have an affordable price and easy to use 

Table 3
Temperature effect on sensor characteristics (voltage values are shown in grey).

                 T,°C
RH% 20°C 25°C 30°C 40°C 50°C

12% 1.018 1.036 1.044 1.058 1.078

33% 1.095 1.114 1.122 1.136 1.156

44% 1.165 1.183 1.191 1.205 1.225

53% 1.26 1.278 1.286 1.300 1.320

64% 1.55 1.568 1.577 1.591 1.612

75% 2.022 2.04 2.049 2.064 2.085

85% 2.51 2.53 3.539 3.554 3.575

97% 3.156 3.176 3.186 3.202 3.224
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development tools with C compilers and debugging capabilities.  These features make 
them appropriate for the realization of small neural networks.
	 It is used an 8 bit microcontroller – Pic18F242, with the following features: RISC 
architecture, hardware multiplier, 10 bit analog-to-digital converter, 4 timers, USART, 
SPI and I2C interfaces.  The computational power of this microcontroller is sufficient 
for our case, because the process of relative humidity change is slow and there are 
no demands for utilization of a high-end microcontroller.  The structure of the sensor 
prototype is presented in Fig. 8.
	 When it is used an ANN to evaluate the sensor response without compensation of 
the temperature effect, the network has three neurons in the hidden layer and the time 
necessary for data processing is 8.4 ms.  The oscillator of the microcontroller is 20 MHz, 
and the program is written in C. 
	 When it is compensated the temperature effect it is used an ANN with 12 neurons 
in the hidden layer.   Before building the neural network in C, Matlab was used for 
evaluating the neural network weights and biases.  Weight and biases values are stored in 
the EEPROM memory of the microcontroller.  The algorithm operates as follows:
1)	 reading ADC value corresponding to RH sensor,
2)	 reading ADC value corresponding to the temperature and evaluation of the 

temperature,
3)	 both ADC values for relative humidity and temperature come into the inputs of the 

neural network,
4)	 the neural network processes the entered data using weights and biases stored in 

EEPROM memory,
5)	 evaluation of the value of relative humidity in percent. 

Fig. 7.    Temperature compensation using ANN.
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	 The processing time of this ANN is 30.2 ms, which is acceptable in our case.
The software of the microcontroller also contains functions for temperature calibration, 
communication functions for I2C protocol and a simple command parser. 

3.4.	 Comparison between ANN and polynomial approximations
	 Three control points were used for the evaluation of error contained in the ANN 
response for these points.  The computation of error was based on the following formula:

Fig. 8.    Block diagram of RH sensor (a) and schematics (b).

(a)

(b)
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	 	 (2)

where ∆RH is the difference between  relative humidity generated by the ANN and  real 
relative humidity defined from the type of salt solution.

	 	 (3)

The control points used for the validation of the neural network results are 22, 80 and 
92% relative humidity.
	 The results of the validation are shown in Table 4.  The results generated by a well-
trained neural network were compared with those obtained using polynomials.  For the 
purposes of this comparison, second third- and fourth-order polynomials were used.  
Figure 9 shows the shapes of responses of the ANN and polynomials for the entire range 
of voltage changes.
	 It can be observed from Fig. 9 that the neural network fits the input data better than 
polynomials.  The results of this comparison are shown in Table 5. 

4.	 Conclusion

	 The present paper describes the linearization of the characteristic of a ceramic sensor 
for relative humidity using artificial neural networks.  The realization of an intelligent 

Fig. 9.    Comparison between ANN and polynomial approximations.
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Table 5 
Comparison of results.

Uo,     [V] 1.018 1.095 1.165 1.26 1.55 2.022 2.51 3.156
RHreal,
%RH 12 33 44 53 64 75 85 97
RHsecond_order_polynomial,
%RH 27.1807 32.4735 37.0969 43.0849 59.3218 79.1705 91.1236 93.5482
RHthird_order polynomial,
%RH 20.2527 30.3083 38.4114 47.9316 67.8824 79.5481 80.7390 97.9266
RHfourth_order_polynomial,
%RH 15.2844 30.5012 41.4260 52.5260 68.1216 72.2383 86.0273 96.8750
RHANN,
%RH 12.0253 32.8679 44.2280 52.8405 64.0637 74.9574 85.0224 96.9954

sensor with temperature effect compensation on the basis of an 8-bit microcontroller 
has been shown as well.  A comparison of the ANN method with other methods of 
approximation has been made, and the error for every method at several control points 
has been shown.  For this type of sensor characteristic the ANN gives better results than 
polynomials.  The compensation of temperature effect using ANN improves the accuracy 
of the sensor in wide temperature ranges.
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