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	 The	 present	 paper	 contains	 a	 review	 of	 software	 methods	 for	 linearization.	 	 A	
description is given of the properties of ceramic sensing elements for relative humidity 
sensors.	 	 A	 realization	 of	 a	 sensor	 for	 relative	 humidity	 with	 linearization	 of	 the	
characteristic	 and	 compensation	 of	 the	 temperature	 effect	 has	 been	 described	 as	well.	
The	 use	 of	 artificial	 neural	 networks	 (ANNs)	 is	 compared	 with	 other	 methods	 for	
linearization.

1.	 Introduction

 Sensors play an important role in modern measurement and control systems.  The 
developers	 of	 new	 types	 of	 sensor	 aim	 to	 improve	 their	 precision	 and	 functionality.		
There	 are	 many	 methods	 of	 hardware	 and	 software	 compensation	 for	 nonlinearities,	
narrowing	 the	 error	 range	 and	 improving	 accuracy.	 	They	 include	 different	 techniques	
for the linearization of sensor characteristics and reduction of impacts of disturbing 
phenomena. 
 Generally, the characteristics of sensors are nonlinear and they have to be linearized. 
The	linearization	is	mainly	a	software	approach	to	improving	sensor	accuracy.		There	are	
different methods for this(1)	and	they	could	be	classified	as	follows:
- look-up tables
- polygonal interpolation
- polynomial approximation
- cubic spline interpolation
-	 linearization	with	artificial	neural	networks	(ANNs)
	 Each	 of	 these	 methods	 has	 unique	 features,	 which	 are	 reflected	 on	 its	 software	
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implementation,	required	processing	resources,	and	the	accuracy	that	can	be	achieved	by	
it. 
 The look-up table is a method easy to implement.  Pairs of points from the nonlinear 
sensor characteristics and real values of a measured phenomenon are placed in the 
nonvolatile	 memory.	 	 A	 microcontroller	 uses	 these	 data	 pairs	 for	 the	 evaluation	 of	
measured	data.	 	A	disadvantage	of	 this	method	 is	 that	many	pairs	of	points	have	 to	be	
used	to	achieve	a	suitable	accuracy.		This	is	reflected	on	the	memory	size	necessary	for	
storage of a look-up table. 
 Polygonal interpolation,(1)	 as	 compared	 with	 look-up	 tables,	 needs	 fewer	 points	
to	 linearize	 sensor	 characteristics.	 	 Spaces	 between	 each	 pair	 of	 adjacent	 points	 are	
interpolated	with	straight	lines.		When	the	characteristic	has	a	high	degree	of	nonlinearity,	
we	need	more	points	to	achieve	higher	accuracy	and	to	reduce	errors.
 Polynomial approximation linearizes sensor characteristics using polynomials.  
The	most	 widely	 used	 polynomials	 are	 third-order	 polynomials.	 	 The	more	 nonlinear	
a characteristic and a more local minimums and maximums it has, the higher-order 
polynomials have to be used. 
	 Using	 spline	 interpolation,	 we	 can	 build	 a	 curve	 that	 passes	 through	 all	 of	 the	
reference	points.		The	spaces	between	every	two	adjacent	reference	points	are	represented	
by parabolas. 
	 A	 very	 advanced	method	 for	 linearization	 is	 the	 utilization	 of	ANNs.(2–9)	 	A	 neural	
network	 consists	 of	 neurons,	 grouped	 in	 layers.	 	 An	 artificial	 neuron	 resembles	 the	
functionality	of	a	biological	neuron.		The	most	commonly	used	ANNs	are	feed-forward	
networks.(10)		They	can	be	trained	using	the	back-propagation	training	algorithm.		ANNs	
can	 be	 used	 together	 with	 other	 methods	 for	 information	 processing,	 such	 as	 digital	
signal processing and fuzzy logic.(10)	 	 Interaction	 between	 neural	 networks	 and	 fuzzy	
logic	 takes	 place	 when	 fuzzy	 logic(11) is used for preliminary data processing before 
feeding	the	data	to	a	neural	network.		The	reversed	process	is	also	possible.	
 The main aim of the current paper is to present the linearization of RH sensor 
characteristic	and	compensation	of	the	effect	of	temperature	on	it	using	an	ANN	as	well	
as to offer a prototype of that sensor. 

2.	 Characteristics	of	Ceramic	Sensing	Elements	for	Relative	Humidity

 One of the trends in the development of relative humidity sensors is based on 
thin-film	 and	 thick-film	 ceramic	 sensing	 elements.(12)  They have advantages such as 
small	 dimensions,	 not	 requiring	 very	 sophisticated	 technology	 for	 manufacturing,	
comparatively	 low	 price	 and	 resistance	 to	 harsh	 environments.	 	 This	 group	 of	
sensors	 includes	 those	 in	 which	 the	 relative	 humidity	 sensing	 elements	 are	 porous	
semiconductive or dielectric ceramic, or ceramic layers, based on one or several oxides. 
These	 sensing	 elements	 show	 high	 resistance	 when	 the	 humidity	 is	 low,	 nonlinear	
characteristics,	 polarization	when	DC	 voltage	 is	 applied	 and	 temperature	 dependence.	
These	features	require	the	development	of	appropriate	conditioning	electronics.		Ceramic	
sensing	elements	can	be	classified	into	 two	groups,	depending	on	the	 type	of	electrical	
conductivity, namely, electron conductivity and ion conductivity.
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	 When	 the	sensors	are	of	 the	 ion	conductivity	 type,	 the	decrease	 in	sensing	element	
resistance,	 owing	 to	 the	 increase	 in	 humidity	 depends	 on	 the	 sorption	 on	 the	 sensing	
element	surface	and	condensation	of	water	in	the	microcapillary	of	the	ceramics.		Sensors	
of	the	electron	conductivity	type	use	the	effect	of	chemisorption.		The	molecules	of	water	
act as donor centers and provide electrons to the ceramics. 
 The operation principle of ceramic sensors of relative humidity is based on the 
sorption of moisture from the ambient environment.  Changes in the physicochemical 
and electrophysical parameters of sensors are the main factors for the measurement 
of	 humidity	 in	 the	 environment.	 	 The	 equivalent	 electrical	 circuit	 of	 ceramic	 sensing	
element	is	complex.		It	can	be	simplified	and	presented	as	resistance	RH and capacitance 
CH connected in parallel.  The impedance of the circuit, ZH,	 for	 frequency	 f, can be 
formulated as:

  (1)

where	 .  Depending on the kind of prevailing conductivity, the sensing element 
can act as either a resistive or a capacitive element.
 Current research focuses on ceramic sensing elements based on TiO2	 with	
components synthesized using a conventional ceramic technology.  The constituents 
included in ceramics are PbO and Bi2O3.  The different types of ceramic sensing element 
are synthesized at 1050°C and 850°C (see Table 1).  The dependence of resistance and 
capacitance on relative humidity ( RH=ƒ(H) and CH=ƒ(H) ) are presented in  Fig. 1.
	 Figure	 2	 shows	 the	 basic	 parts	 of	 sensor	 electronics	 for	 signal	 conditioning.	 	With	
the	 help	 of	 this	 electronics,	 sensor	 impedance	 is	 transformed	 to	DC	 voltage.	 	An	RC	
generator	is	used	for	generation	of	sinusoidal	signals.		The	generator	works	in	the	range	
from 100 Hz to 10 kHz.  Sinusoidal signals are used to avoid the negative effects of 
polarization.
	 Voltage	obtained	from	the	amplitude	detector	is	amplified	by	a	noninverting	amplifier.		
Figure	3	shows	the	humidity-to-voltage	ratio	of	three	experimental	sensing	elements.

3.	 Results	and	Discussion

3.1. Utilization of ANN for approximation of sensor characteristics
	 An	 artificial	 neural	 network	 consists	 of	 neurons.	 	 They	 can	 be	 treated	 as	 a	 set	 of	
computational objects for parallel data processing.  There are different models of 

Table 1 
Composition and synthesis temperature of experimental samples.

Sample Composition Temperature of synthesis
TO10(1050) 90% mol TiO2 + 10% mol PbO 1050°C
TO10(850) 90% mol TiO2 + 10% mol PbO 850°C
TB5(1050) 95% mol TiO2 + 5% mol Bi2O3 1050°C
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artificial	neurons	and	several	types	of	neural	network.		The	ANN	can	be	implemented	as	
a	hardware	circuit	or	a	software	program.		The	structure	of	an	ANN	is	shown	in	Fig.	4.
	 To	work	properly,	the	neural	network	must	be	trained	with	a	set	of	training	data.		The	
sequence	of	the	training	process	is	as	follows.

Fig.1.    Relationship of RH and CH	with	relative	humidity.

Fig.	2.				Flow	chart	of	sensor	electronics.

   (a)     (b)

Fig. 3.    Output characteristic of relative humidity sensor .
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1)	 Training	 data	 acquisition.	 	 In	 our	 case,	 we	 measure	 the	 output	 voltage	 at	 several	
points.  These points represent relative humidity achieved using concentrated salt 
solution. 

2)	 The	neural	network	is	trained	using	the	Neural	Network	Toolbox	of	Matlab.
3)	 The	trained	network	is	verified	to	determin	whether	it	was	trained	properly.

3.2. Linearization of sensor characteristics using neural network
	 Several	 types	 of	ANN	with	 different	 numbers	 of	 neurons	 and	 activation	 functions	
were	examined.		The	input	data	in	the	training	process	consist	of	pairs	of	voltage	values,	
measured at the output of the conditioning electronic circuit and relative humidity values, 
which	appear	over	the	surfaces	of	the	hermetically	closed	solutions	of	different	types	of	
salt.  Table 2 includes data for the T010(850) sensing element sample.
	 On	 the	 basis	 of	 the	 acquired	 data	 set	 and	 using	 the	 Matlab	 function	 for	 shape-
preserving	interpolation,	the	sensor	characteristic	was	plotted	as	shown	in	Fig.	5.
	 Figure	 5	 shows	 that	 the	 characteristic	 is	 nonlinear	 and	 the	 sensor	 has	 higher	
sensitivity in the range of the ambient humidity from 50 to 100%.
	 After	 testing	 several	 types	 of	ANN,	 a	 neural	 network	 with	 one	 hidden	 layer	 was	
chosen.		The	network	has	feed-forward	architecture.		It	was	trained	using	the	Levenberg-
Marquardt	 algorithm.	 	 The	 error	 after	 this	 training	was	 0.0097.	 	 The	 chosen	 network	
has three neurons in its hidden layer and one neuron in the output layer.  The generated 
output	data	from	the	network	is	shown	in	Fig.	6.
 The neurons in the hidden layer have a sigmoid function of activation. The outputs 
of	neurons	can	have	values	between	0	and	1.		The	only	neuron	in	the	output	layer	has	a	
linear	function	of	activation	and	the	value	of	its	output	can	vary	from	minus	infinity	to	
plus	infinity.		Each	of	the	neurons	of	the	hidden	layer	has	one	input,	where	voltage	is	fed,	
generated by the relative humidity sensor. 
 The characteristics of ceramic sensing elements depend on ambient temperature.  
Every temperature change leads to a change in the resistance of ceramic elements.  Table 
3	shows	the	characteristics	of	a	sensing	element	based	on	the	TO10(850)	material	in	the	
range	from	20	to	50°C.		An	improvement	of	sensor	accuracy	can	be	achieved	only	after	

Fig.	4.				ANN	structure.
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Fig. 5.    Relative humidity sensor characteristic.

Fig.	6.				Output	data	generated	from	trained	network.

Table 2
Training	data	of	neural	network	for	T010(850)	sensing	element	linearization.

Uo, [V]   1.018   1.095   1.165   1.26   1.55   2.022   2.51   3.156
RH, [%] 12 33 44 53 64 75 85 97



Sensors and Materials, Vol. 19, No. 2 (2007)	 101

the compensation for the temperature effect on sensing element characteristics.
	 To	 compensate	 for	 the	 temperature	 effect	 on	 the	 sensor	 characteristics,	 we	 used	 a	
neural	network	with	12	neurons	 in	 the	hidden	layer.	 	Every	neuron	in	 the	hidden	layer	
has	two	inputs	–	one	for	voltage	coming	from	the	sensor,	and	the	other	for	temperature	
coming	 from	a	 low-cost	 temperature	 sensor.	 	The	output	 layer	 consists	of	one	neuron.		
The	output	response	of	a	trained	ANN	is	shown	in	Fig.	7.

3.3 Practical realization of a relative humidity sensor
 In order to apply in practice the results obtained from the linearization of the 
characteristic and compensation of the temperature effect different approaches can be 
taken.		The	neural	network	can	be	realized	using	specialized	neuron	chips,	programmable	
logic devices and microcontrollers or DSP processors. 
 The specialized neuron chips are electronic components dedicated to the building of 
ANN	processing	systems.		Several	firms	offer	commercial	modifications	of	such	devices.	
They	have	features	such	as	a	high	computation	speed	of	the	neural	network	and	a	large	
number of layers and neurons and unfortunately, high price.  Most of these chips are 
designed	for	implementation	of	complex	neural	networks.
	 Using	 programmable	 logic	 devices	 (CPLD,	 FPGA)	 it	 is	 possible	 to	 build	 parallel	
structures	 for	data	processing,	 such	as	ANNs.	 	Each	neuron	 takes	a	 separate	part	 from	
the	programmable	logic	and	working	in	parallel	can	achieve	a	high	computational	speed.		
Some	drawbacks	of	FPGA	are	 the	 relatively	high	price	of	 the	 chips	 as	well	 as	 certain	
difficulties	in	realizing	mathematical	operations	with	real	numbers.
	 The	third	approach	for	building	ANNs	is	to	use	microcontrollers	or	DSP	processors.		
Most microcontrollers and DSP processors have an affordable price and easy to use 

Table 3
Temperature	effect	on	sensor	characteristics	(voltage	values	are	shown	in	grey).

                 T,°C
RH% 20°C 25°C 30°C 40°C 50°C

12% 1.018 1.036 1.044 1.058 1.078

33% 1.095 1.114 1.122 1.136 1.156

44% 1.165 1.183 1.191 1.205 1.225

53% 1.26 1.278 1.286 1.300 1.320

64% 1.55 1.568 1.577 1.591 1.612

75% 2.022 2.04 2.049 2.064 2.085

85% 2.51 2.53 3.539 3.554 3.575

97% 3.156 3.176 3.186 3.202 3.224
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development	 tools	with	C	compilers	 and	debugging	capabilities.	 	These	 features	make	
them	appropriate	for	the	realization	of	small	neural	networks.
	 It	 is	 used	 an	8	bit	microcontroller	–	Pic18F242,	with	 the	 following	 features:	RISC	
architecture,	 hardware	multiplier,	 10	 bit	 analog-to-digital	 converter,	 4	 timers,	USART,	
SPI and I2C	 interfaces.	 	The	 computational	 power	 of	 this	microcontroller	 is	 sufficient	
for	 our	 case,	 because	 the	 process	 of	 relative	 humidity	 change	 is	 slow	 and	 there	 are	
no demands for utilization of a high-end microcontroller.  The structure of the sensor 
prototype is presented in Fig. 8.
	 When	 it	 is	 used	 an	ANN	 to	 evaluate	 the	 sensor	 response	without	 compensation	 of	
the	 temperature	effect,	 the	network	has	 three	neurons	 in	 the	hidden	 layer	and	 the	 time	
necessary for data processing is 8.4 ms.  The oscillator of the microcontroller is 20 MHz, 
and	the	program	is	written	in	C.	
	 When	 it	 is	 compensated	 the	 temperature	 effect	 it	 is	used	an	ANN	with	12	neurons	
in	 the	 hidden	 layer.	 	 Before	 building	 the	 neural	 network	 in	 C,	 Matlab	 was	 used	 for	
evaluating	the	neural	network	weights	and	biases.		Weight	and	biases	values	are	stored	in	
the	EEPROM	memory	of	the	microcontroller.		The	algorithm	operates	as	follows:
1)	 reading	ADC	value	corresponding	to	RH	sensor,
2)	 reading	 ADC	 value	 corresponding	 to	 the	 temperature	 and	 evaluation	 of	 the	

temperature,
3)	 both	ADC	values	for	relative	humidity	and	temperature	come	into	 the	 inputs	of	 the	

neural	network,
4)	 the	 neural	 network	 processes	 the	 entered	 data	 using	 weights	 and	 biases	 stored	 in	

EEPROM memory,
5) evaluation of the value of relative humidity in percent. 

Fig.	7.				Temperature	compensation	using	ANN.
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 The processing time of this ANN is 30.2 ms, which is acceptable in our case.
The software of the microcontroller also contains functions for temperature calibration, 
communication functions for I2C protocol and a simple command parser. 

3.4. Comparison between ANN and polynomial approximations
 Three control points were used for the evaluation of error contained in the ANN 
response for these points.  The computation of error was based on the following formula:

Fig. 8.    Block diagram of RH sensor (a) and schematics (b).

(a)

(b)



104	 Sensors and Materials, Vol. 19, No. 2 (2007)

  (2)

where	∆RH	is	the	difference	between		relative	humidity	generated	by	the	ANN	and		real	
relative	humidity	defined	from	the	type	of	salt	solution.

  (3)

The	control	points	used	 for	 the	validation	of	 the	neural	network	 results	are	22,	80	and	
92% relative humidity.
	 The	results	of	the	validation	are	shown	in	Table	4.		The	results	generated	by	a	well-
trained	neural	network	were	compared	with	those	obtained	using	polynomials.	 	For	the	
purposes	 of	 this	 comparison,	 second	 third-	 and	 fourth-order	 polynomials	 were	 used.		
Figure	9	shows	the	shapes	of	responses	of	the	ANN	and	polynomials	for	the	entire	range	
of voltage changes.
	 It	can	be	observed	from	Fig.	9	that	the	neural	network	fits	the	input	data	better	than	
polynomials.		The	results	of	this	comparison	are	shown	in	Table	5.	

4.	 Conclusion

 The present paper describes the linearization of the characteristic of a ceramic sensor 
for	 relative	humidity	using	 artificial	neural	networks.	 	The	 realization	of	 an	 intelligent	

Fig.	9.				Comparison	between	ANN	and	polynomial	approximations.
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Table 5 
Comparison of results.

Uo,     [V] 1.018 1.095 1.165 1.26 1.55 2.022 2.51 3.156
RHreal,
%RH 12 33 44 53 64 75 85 97
RHsecond_order_polynomial,
%RH 27.1807 32.4735 37.0969 43.0849 59.3218 79.1705 91.1236 93.5482
RHthird_order polynomial,
%RH 20.2527 30.3083 38.4114 47.9316 67.8824 79.5481 80.7390 97.9266
RHfourth_order_polynomial,
%RH 15.2844 30.5012 41.4260 52.5260 68.1216 72.2383 86.0273 96.8750
RHANN,
%RH 12.0253 32.8679 44.2280 52.8405 64.0637 74.9574 85.0224 96.9954

sensor	 with	 temperature	 effect	 compensation	 on	 the	 basis	 of	 an	 8-bit	 microcontroller	
has	 been	 shown	 as	 well.	 	A	 comparison	 of	 the	ANN	 method	 with	 other	 methods	 of	
approximation has been made, and the error for every method at several control points 
has	been	shown.		For	this	type	of	sensor	characteristic	the	ANN	gives	better	results	than	
polynomials.		The	compensation	of	temperature	effect	using	ANN	improves	the	accuracy	
of	the	sensor	in	wide	temperature	ranges.
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