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 In this article, we propose a dual-stage classification framework designed for identifying rare 
or unseen patterns in the hard disk drive (HDD) industrial test process. The proposed framework 
integrates novelty detection and supervised learning methodologies to effectively address the 
challenges associated with imbalanced datasets and the detection of infrequent or unseen 
patterns within continuously changing environments. By employing novelty detection as the 
first-stage classifier followed by supervised learning as the second-stage classifier, the proposed 
method demonstrates an increased capacity to adapt to fluctuating environments, consequently 
enhancing the overall accuracy of process classification in practical manufacturing settings. To 
strengthen the robustness of novelty detection methods, an ensemble model technique is 
employed. Notably, the accuracy of the novelty detection methods in the first stage can be 
further enhanced with the incorporation of supervised learning techniques, particularly when a 
sufficiently large number of labeled samples are amassed. The proposed method consistently 
maintains accuracy, even in the face of changing environments, as it demonstrates the ability to 
adapt to data drift without necessitating the acquisition of new labeled data in the initial stage. 
This adaptability makes it particularly well suited for managing imbalanced datasets, rendering 
it highly practical for industrial applications. In a comprehensive case study conducted within 
the HDD industry, the framework exhibits immediate adaptability to rapidly changing 
environments while preserving high accuracy. This highlights the practical effectiveness of the 
proposed dual-stage classification framework in addressing the unique challenges posed by 
industrial scenarios.

1. Introduction

 The hard disk drive (HDD) test process generates over a thousand parameters, making it 
difficult and time-consuming to identify outlier samples, but this is an essential task to improve 
the quality of the industrial test process. To systematically monitor and ensure product quality, 
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an additional screening process has been proposed for outlier samples. However, the HDD 
qualification process is not static, and changes may occur as a result of improvements in 
materials or testing algorithms, necessitating the need for a reanalysis process. This can be a 
laborious task for humans, which is why machine learning is proposed as a solution. The 
application of a supervised algorithm(1–3) has been proposed to classify outliers as failure 
patterns in the data. However, this approach has limitations in practical production environments 
where the data can change frequently. Retraining supervised algorithms becomes necessary 
when changes occur, and collecting labeled data, which can be time-consuming, limits their 
applicability. In our case study, some rare patterns can take time (up to many months) just to 
collect data for training. In the domain of supervised learning, the enhancement of predictive 
model accuracy is directly proportional to the augmentation of training samples. The 
insufficiency of samples within any class can result in an underfit model, highlighting the 
importance of acquiring a sufficiently large dataset for all classes. The principal challenge for 
imbalanced data lies in the need for an ample collection of samples. In the industrial test process, 
numerous pass samples will be generated over time but failing samples or defects will rarely 
occur. Defective parts per million (DPPM) is a critical indicator of quality performance. The 
increased challenge associated with lower DPPM values lies in the complexities of acquiring 
failing samples. This challenge is particularly pronounced in the context of supervised learning 
when applied to industrial test processes. The difficulty is further compounded in situations 
where the process undergoes frequent changes, necessitating frequent retraining of the model. In 
contrast, novelty detection algorithms only require pass samples for training and do not 
necessitate failing samples. Consequently, their application to the industrial test process is 
notably more straightforward. The duration allocated for collecting data has been significantly 
reduced, resulting in a shortened data collection period. This adjustment proves beneficial in 
efficiently addressing the challenges posed by a rapidly changing environment. However, 
initiating the development of a novelty detection model requires careful feature selection. Unlike 
supervised learning, these models are highly sensitive to feature dimensions. The prudent 
selection of features is crucial for the model’s effectiveness in identifying novel patterns. Several 
groups have addressed the novelty detection and identification task. For instance, Peng et al.(4) 
applied the local outlier factor (LOF) algorithm to identify outliers effectively by comparing the 
density of each data. Velasquez et al.(5) suggested an ensemble anomaly detection approach that 
integrates three models, namely, LOF, one-class support vector machine (OCSVM), and 
autoencoder. Termite et al.(6) introduced a method for monitoring conditions, which diagnoses 
anomaly types and identifies novel conditions. This method uses a one-nearest classifier based 
on a regularly updated dictionary. Saucedo-Dorantes et al.(7) applied a self-organizing map 
(SOM) model for each machinery condition. The authors conducted novelty detection and fault 
diagnostics by introducing new data samples to each SOM and measuring their similarity to the 
data used in constructing SOM. However, these methodologies possess certain limitations, 
including the imperative for careful feature selection. Moreover, novelty detection methods are 
trained on a single class. Novelty detection algorithms never learn about other classes during 
training, and they lack a comprehensive understanding of the data distribution across different 
classes. Single class training can lead to a lower accuracy than those of supervised learning 
methods that have learned from all classes.



Sensors and Materials, Vol. 36, No. 4 (2024) 1489

 The proposed method addresses the limitations associated with both novelty detection and 
supervised learning approaches by seamlessly integrating them into a more robust framework. 
This framework effectively eliminates the disadvantages associated with novelty detection and 
supervised learning, while retaining their respective advantages. Within the proposed 
framework, an ensemble novelty detection strategy is employed as the initial stage classifier, 
combining two models, namely, LOF and OCSVM. The dual-stage classification framework has 
been carefully designed to align with real world scenarios such that healthy-condition samples 
will be generated much faster than unhealthy-condition samples, which rarely occur and require 
a much longer time to collect data. The application of ensemble novelty detection in the initial 
stage expedites the sample collection, as it eliminates the need for unhealthy-condition samples 
at this stage. After generating a sufficient amount of unhealthy sample data, the classifier 
transitions to a supervised classifier in the second stage. This results in an enhanced level of 
accuracy. The advantages of this approach include rapid adaptation, increased robustness, and 
high precision. Furthermore, the proposed framework addresses challenges related to overfitting 
and underfitting. This methodology is applicable across various industrial domains, particularly 
industrial testing processes.

2. Methodology

2.1 Novelty detection algorithms

 Novelty detection algorithms are designed to detect unlabeled samples that deviate 
significantly from normal patterns. Equation (1) is a mathematical model for classifying an event 
as a novelty or a normal event. 
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 Equation (1) represents a function with two input variables: sx, and tc. The variable sx denotes 
the abnormality score, whereas the variable tc corresponds to the current temporal threshold. 
The threshold could be changed over time on the basis of the current distribution of training 
samples.

2.2 Supervised learning algorithms

 Supervised learning is a type of algorithm that learns from labeled examples. It adopts the 
designation “supervised” because of the guidance provided by previously known output results 
during the learning process. During the training phase, the algorithm learns from examples 
where it receives inputs paired with their corresponding labels. The algorithm is exposed to 
examples in which it receives inputs paired with their corresponding labels. This means that the 
algorithm learns from instances where it sees both the input data and the expected output, 
allowing it to understand and generalize patterns for future predictions or classifications. After 
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the completion of the training phase, the algorithm becomes capable of processing new inputs 
and making predictions for their associated labels. The principal goal of a supervised learning 
model is to provide precise label predictions for new input data. Figure 1 depicts the general 
process of supervised learning.
 Supervised learning algorithms generally exhibit greater accuracy than those of novelty 
detection algorithms such as LOF and OCSVMs. Nevertheless, the limitation of supervised 
learning lies in its dependence on labeled data, which can pose challenges in practical 
implementation. Furthermore, the process of acquiring labeled data for infrequent patterns can 
be both cumbersome and time-consuming.

2.3 LOF

 The LOF algorithm, as described in Ref. 8, is a method used to find unusual or novel data 
points. It accomplishes this by measuring how much the density of a data point differs from its 
neighbors. If a point has a lower density than its neighbors, LOF labels it as abnormal or novel. 
The output of LOF is an anomaly score, reflecting the degree of dissimilarity of each data point 
from its neighboring points. The LOF method consists of the following four steps.
1. Set Cluster Size: Choose the cluster size by deciding on a k-value.
2. Calculate Reachability Distance (RD): Measure the RD for each data point, considering its 

proximity to neighboring points.
3. Compute Local Reachability Distance (LRD): Combine the individual reachability distances 

to determine the LRD for each data point. 
4. Generate Anomaly Scores: Finally, assign a LOF score or anomaly score to each data point to 

identify potential outliers or anomalies in the dataset.
 The k-value plays a crucial role in defining the cluster size, influencing the method’s ability 
to detect abnormal data. The RD represents the distance between a data point and its farthest 
neighbor among the k nearest points. The RD can be calculated using Eq. (2), where XA and XA’ 
denote data points, and K is the chosen k-value.

Fig. 1. Supervised learning high-level approach.
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 RD(XA, XA’) = max(K − distance(XA’), distance(XA, XA’)) (2)

 After acquiring the RD, the LRD is calculated using Eq. (3), where Nk(A) is the k nearest 
neighbors.
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 The computation of the LOF score or anomaly score of individual data points relies on their 
corresponding LRD values. This score reflects the ratio of the LRD value associated with a 
specific data point to the cumulative LRD values across all data points. This metric serves as an 
indicator for evaluating the relative distance ratio between a given data point and the remaining 
dataset. The anomaly score is determined by applying Eq. (4),(9) where LOF stands for the LOF 
score, LRD denotes the LRD value, and Nk(A) represents the k nearest neighbors.
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 As shown in Fig. 2, the initial stage (referred to as step A) involves the determination of the 
k-value, which represents the number of nearest neighbors considered. This parameter selection 
is crucial in establishing the optimal neighborhood size for subsequent computations. Proceeding 
to step B, the algorithm calculates the RD for each data point.
 In step C, the LRD for each data point is computed by aggregating the RD values of its k 
nearest neighbors. This process measures how closely packed the data is in a local area and 
makes it easier to see where the data is more or less concentrated.

Fig. 2. Illustration of LOF process.
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 Lastly, in Step D, the LOF score is calculated for each data point, leveraging the LRD values 
to evaluate its deviance behavior relative to the local neighborhood. This step provides valuable 
insights into potential anomalies or novelty within the dataset.

2.4 OCSVM

 The OCSVM algorithm, introduced by Schölkopf et al.,(10) functions as a technique for 
novelty detection, focusing on identifying outliers. In contrast to the conventional SVM model 
that necessitates the inclusion of samples from both the majority class and the class representing 
novel instances for classifier construction, OCSVM only requires normal data samples during 
the training phase. The objective of OCSVM is to distinguish potential novelty samples from 
among samples indicative of normal operational conditions. Throughout the training stage, 
OCSVM calculates the support margin or “boundary” that covers the majority of the training 
points on the basis of the normal operating training samples. Subsequently, during testing, if a 
sample lies within this boundary, it is classified as a normal operational sample; conversely, if it 
falls outside this range, it is designated as a novelty sample. However, for nonlinear boundaries, 
kernel transformation is employed to project the data into a higher-dimensional feature space. 
Figure 3 illustrates a visual presentation of the fundamental concept underlying OCSVM.
 In the context of OCSVM, it is assumed that the origin in the feature space belongs to the 
negative or novelty class. The primary aim is to maximize the separation between the origin and 
the cluster of normal samples in the feature space. In summary, the objectives of OCSVM are 
twofold. First, the goal is to construct a classifier within the feature space. This classifier assigns 
positive values to all the samples within the normal cluster and negative values to those outside 
it. The second goal is to maximize the distance of this hyperplane from the origin, grounded on 
the inherent assumption that the origin belongs to the novelty class.

Fig. 3. Illustration of the fundamental concept underlying OCSVM.
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2.5 Ensemble methods

 A machine learning ensemble combines several algorithms to achieve higher accuracy than 
that of any single classifier.(11) There are three main types of ensemble: bagging, boosting, and 
stacking. Bagging and boosting both use the same learning algorithm to predict output labels. 
The distinction between these two methods lies in their approach to generating successive 
subsets during classification. In boosting, datasets are generated randomly, whereas in bagging, 
elements are assigned weights, resulting in varying probabilities of selection for each 
element.(12,13) The third category, known as stacking or voting, utilizes multiple diverse 
algorithms operating on the same dataset.(14,15) In essence, bagging is employed to mitigate the 
model’s variance, boosting addresses the model’s bias, and stacking combines predictions from 
various classifiers to enhance performance. A concise comparison of each method is presented 
in Table 1.
 In the proposed method, the stacking ensemble was applied for combining results from 
multiple models to improve the predictive performance. It is a more accurate and robust classifier 
than the single predictive model. In the proposed methodology, a stacking ensemble was utilized 
to merge outcomes from multiple models, enhancing predictive efficacy. This approach 
represents a more precise and robust classification technique than using just one predictive 
model.

2.6 Deep learning

 Deep learning(16) is a subset of artificial neural networks distinguished by the construction of 
networks comprising multiple layers, often ranging from tens to potentially thousands of layers, 
which is why it is referred to as “deep”. The depth of these networks empowers them to address 
more complex problems by autonomously extracting data features without relying on predefined 
logic.
 In general, deep learning involves using a series of layers to extract features from data. 
Linear models or shallow neural networks (SNNs) might not be good enough for making the best 
predictions. Consequently, deep neural networks (DNNs) have become a way of making a model 
more accurate. Figure 4 illustrates the structure of an SNN, and Fig. 5 illustrates that of a DNN.

Table 1
Ensemble methods: boosting, bagging, and stacking.
Method Characteristics Result

Bagging Homogeneous learners,
parallel fitting Focus on reducing variance, i.e., random forest

Boosting Homogeneous learners,
sequential fitting

Focus on reducing bias, model can be improved with gradient 
descent approach, i.e., XGBoost

Stacking Heterogeneous learners, parallel 
fitting, combines learner results Focus on reducing bias, i.e., majority vote
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2.7 Proposed method

 The proposed method is aimed at combining the strengths and eliminating the weaknesses of 
both novelty detection and supervised algorithms. Initially, when changing conditions are 
applied, no failing samples are available while many pass samples are present. Therefore, a 
robust novelty detection framework based on ensemble learning with LOF and OCSVM is 
proposed as the first-stage classifier to classify abnormally different samples from normal 
patterns.

Fig. 4. Structure of SNN.

Fig. 5. Structure of DNN.
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 The first stage operates until enough failing samples are collected to train the second-stage 
classifier, which is a supervised model. In the second stage, the supervised model is trained and 
compared against the first-stage classifier. If the supervised model outperforms the first-stage 
classifier, it is applied as the second-stage classification and the pattern is defined as a new 
known pattern. Furthermore, the proposed method is an incremental learning approach that 
allows new patterns to be added as new models. The performance of the dual-stage classification 
framework showed greater robustness to overfitting and underfitting problems. Additionally, the 
proposed method can adapt to drift in the data without requiring new labeled data, making it 
more practical for industrial applications. The proposed method architecture is shown in Fig. 6.

3. Experimental Procedure

 The proposed methodology is evaluated and compared with various novelty detection and 
supervised learning algorithms. The total number of collected samples is 381,882, i.e., 73 failing 
samples and 381,809 pass samples. This framework detects failing samples using a predictive 
model. As such, failing samples are positive class and pass samples are negative class. All data 
are collected from an actual industrial test process. The experimental process consists of four 
main steps: data preparation, feature engineering, feature score ranking, and feature selection.

3.1 Data preparation

 In this step, two datasets are prepared: one containing failing drives associated with the 
chosen symptom and the other representing a sample that is representative of a pass drive.

Fig. 6. Overview architecture of proposed method.
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3.2 Feature engineering

 In this step, domain experts brainstormed and created a list of all potential features. First, 
domain experts started with 218 features, which is considered high dimensionality in data 
science. To reduce the dimensionality, data scientists used a decision tree algorithm to identify 
the key features. The feature selection process of the decision tree algorithm helped domain 
experts see which features were most useful for predicting outcomes. After a careful review 
together, the team of data scientists and domain experts chose four features for constructing the 
model.

3.3 Feature score ranking

 The pruned decision tree algorithm was utilized for feature score ranking. This technique 
provides feature membership, which represents the percentage of potential feature sets where a 
given feature is presented in a pruned decision tree.

3.4. Feature selection

 To ensure our model works well not just on the training data but also on new data it has not 
yet seen, we need to think about more than just how well it performs on the training data. We 
should look at other important measures to make the model reliable. The following metrics 
should be taken into consideration.
• Metric 1: number of features (fewer is better)
• Metric 2: number of test algorithms applied to generate the features (more is better).
After careful review, domain experts selected four features to build the final model.

3.5 Building predictive models

 Creating and selecting meaningful features are essential for achieving success in the 
proposed method. Configuration refers to the arrangement or settings of hardware and software 
components. On the basis of experimental results, it has been found that building a common 
model without separate configurations leads to a lower predictive performance in the final 
model. Figure 7 shows the performance of the common model without separate configurations 
and with a lot of false positives and false negatives. To improve the predictive performance, an 
approach was implemented where the model was built using separate configurations, specifically 
focusing on the main configuration. This approach resulted in significant improvements in 
prediction accuracy, as depicted in Fig. 8.
 Table 2 shows the performance of the different algorithms, all of which used the same 
features and preprocessing techniques. Ten models were created per algorithm, with random 
training and testing sets. Table 2 presents the average, minimum, and maximum accuracies for 
each algorithm.
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 Table 3 shows the parameter details of each algorithm. The algorithms in Table 3 utilize the 
Python programming language for their implementation. 
 To address the class imbalance, a 70:30 split ratio for the testing and training sets was 
utilized. However, since the negative class has an excessive number of samples compared with 

Fig. 7. (Color online) Performance of common model without separate configurations.

Fig. 8. (Color online) Performance of separate configuration model.

Table 2
Accuracies of algorithms.
Type Algorithm Min Max Mean
Novelty Detection Ensemble of LOF or OCSVM 0.87 0.92 0.89
Novelty Detection OCSVM 0.87 0.90 0.89
Novelty Detection LOF 0.80 0.90 0.87
Novelty Detection Isolation Forest 0.10 0.67 0.37
Novelty Detection Elliptic Envelope 0.84 0.85 0.84
Supervised SVM 0.85 0.97 0.91
Supervised Deep Neural Network 0.84 0.95 0.91
Supervised AdaBoost 0.69 0.95 0.88
Supervised Gaussian Naïve Bayes 0.82 0.89 0.87
Supervised Quadratic Discriminant Analysis 0.80 0.90 0.86
Supervised k Nearest Neighbors (k = 3) 0.70 0.92 0.84
Supervised Random Forest 0.59 0.95 0.84
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the positive class, downsampling was applied in addition. This technique ensures a balanced 
representation of both classes during training, enhancing the model’s ability to learn patterns 
and make accurate predictions.
 The experimental results showed that the proposed methodology achieves up to 92% 
accuracy for the best model and an average of 89% using the ensemble model of LOF and 
OCSVM for novelty detection. While supervised algorithms such as SVM and DNN can achieve 
higher accuracy, they require a significant amount of time to collect labeled data. This time-
consuming process is exacerbated by rare patterns such as failure patterns in manufacturing 
processes. In the proposed method, supervised learning algorithms are not fixed, and on the 
basis of the concept of Industry 4.0, modern software development is supported by continuous 
integration (CI) and continuous delivery (CD) or machine learning operation,(17) allowing all 
models from supervised learning algorithms to be mixed and pushed to the running production 
environment without interrupting the run. In other words, the system can execute multiple 
algorithms in real time and support the addition of new models on the fly.

4. Conclusions

 The proposed method addresses the classification of rare or unseen patterns in a continuously 
changing environment such as the HDD test process. The method involves a dual-stage 
classification approach using both ensemble novelty detection and supervised learning 
algorithms. The first stage utilizes an ensemble learning approach with LOF and OCSVM, 
achieving an accuracy of up to 92%. The second stage involves supervised learning using either 
SVM or DNN, which achieves an accuracy of up to 97%. The combination of these two 
algorithms allows the system to adapt to data drift without needing new labeled data. 
Additionally, once labeled data are available, the system can further improve the classification 
accuracy. 

Table 3
Parameters of algorithms.

Algorithm
Input Parameters

Output
Negative Class Positive Class

Original Reduced Original 
Samples

Training 
Samples

Original 
Samples

Training 
Samples

Ensemble of LOF or OCSVM 218 4 1 381,882 1,000 78 0
OCSVM 218 4 1 381,882 1,000 78 0
LOF 218 4 1 381,882 1,000 78 0
Isolation Forest 218 4 1 381,882 1,000 78 0
Elliptic Envelope 218 4 1 381,882 1,000 78 0
SVM 218 4 1 381,882 1,000 78 20
Artificial neural network 218 4 1 381,882 1,000 78 20
AdaBoost 218 4 1 381,882 1,000 78 20
Gaussian Naïve Bayes 218 4 1 381,882 1,000 78 20
Quadratic Discriminant 
Analysis 218 4 1 381,882 1,000 78 20

k Nearest Neighbors (k = 3) 218 4 1 381,882 1,000 78 20
Random Forest 218 4 1 381,882 1,000 78 20
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 The proposed framework helps eliminate the weaknesses of each algorithm. For example, 
underfitting in the first-stage novelty detection can be improved by the supervised learning 
algorithm in the second stage, while overfitting in the supervised learning algorithm can be 
prevented by a long validation time. The long validation time is acceptable in practical 
applications because of the support provided by the ensemble novelty detection model. 
 Furthermore, the proposed method supports incremental learning, where new patterns can be 
added to the system without interruption. This is made possible by the continuous integration 
and delivery (CI/CD) process, which is a modern software development practice. The system can 
execute multiple algorithms in real time, and new predictive models can be added to the 
production environment without interrupting the run. By solving problems related to 
underfitting, overfitting, and real-time operation, the proposed dual-stage classification concept 
offers a more robust and efficient approach to classification in a continuously changing 
environment. 
 The proposed method was successfully applied to quality monitoring in the HDD test 
process, and it has a significantly improved defect detection capability. By utilizing this concept, 
the sampling rate can be reduced by 80% compared with the traditional decision boundary 
defined by humans. This approach can also be applied to other industrial sectors, which is the 
benefit of the proposed method.
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