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Decision tree algorithms are widely used for solving classification and regression problems.
Their popularity can be attributed to their transparent nature, simplicity, easy interpretability,
faster classification speed, and strong decision rules. However, decision tree induction algorithms
face various inherent and external limitations, such as overfitting, high sensitivity to noise and
outliers, and instability with minimal data variations. In this study, we introduce an innovative
approach to enhance traditional decision tree algorithms [e.g., Iterative Dichotomiser 3 (ID3),
C4.5, and Classification and Regression Trees (CART)] by incorporating feature selection
techniques. The proposed approach aims to enhance the accuracy and efficiency of decision tree
models. Experiments were conducted on a real-world dataset of a hard disk drive (HDD)
manufacturing process using the proposed approach. In comparison with a baseline where all
features were utilized, the study highlighted a significant improvement in accuracy, indicating
that the approach holds immense potential for optimizing decision tree algorithms and improving
the HDD manufacturing process.

1. Introduction

Decision tree algorithms have long been popular in the field of machine learning because
they supply simple solutions for classification and regression tasks.(!"®) They are attractive
because they imitate human decision-making processes, making them accessible to both experts
and nonexperts. However, despite their popularity, traditional decision tree algorithms such as
Iterative Dichotomiser 3 (ID3), C4.5, and Classification and Regression Trees (CART) have their
limitations.

One of the main challenges faced by conventional decision tree algorithms is their tendency
to overfit, especially when dealing with complex datasets.(>® They also struggle with noise and
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outliers, which can affect the accuracy and reliability of the models.*>!9 Furthermore, even
minor variations in the data can cause instability in model predictions.

To address these issues, alternative methods have been explored to improve traditional
decision tree algorithms. One approach involves using feature selection techniques, which aim to
identify the most relevant features for modeling while reducing the data’s dimensionality. By
focusing on informative features, these methods can enhance model performance and tackle
problems like overfitting and noise.

For example, Liu and Zhou!) proposed a feature selection approach based on decision tree
rules for large-scale imbalanced data. In their approach, decision tree rules generated by the
CART algorithm are used to identify relevant features on the basis of their frequency within the
rules. To evaluate the effectiveness of their approach, they compared it with two other methods,
chi-square and F-statistic, using a dataset from Santander Bank. The findings demonstrated that
their approach yielded higher AUC, reduced computational time, and required fewer features
compared with the filter-based methods.

As another example, An and Zhou!? proposed an evaluation model for rural energy
construction based on the ID3 decision tree algorithm and the Relief feature selection algorithm.
The main goal of the model was to enhance the accuracy and efficiency of the decision tree
algorithm. This was achieved by filtering out irrelevant attributes and assigning high importance
to the significant attributes. Additionally, they conducted an analysis of the solar energy
resources available in rural areas. They assessed the abundance, stability, utilization value, and
suitability for grid-connected power generation of these resources. They concluded that solar
energy holds immense potential for poverty alleviation and rural revitalization. Furthermore,
they provided recommendations for improving the technology and application of solar energy
utilization through demonstrations.

Estherly and Prasetiyo!3 applied the C4.5 algorithm with information gain for feature
selection and the bagging ensemble method to overcome class imbalance in the Original
Wisconsin Breast Cancer Dataset. By incorporating information gain as a feature selection
technique, they were able to achieve a remarkable average accuracy of 96.49%. This surpassed
the performance of the C4.5 algorithm without information gain or bagging ensemble.

In the field of the hard disk drive (HDD) manufacturing process, decision tree algorithms
play a critical role. This complex task involves assembling components from various sources,
making accurate predictive models essential. The integration of feature selection techniques into
conventional decision tree algorithms is being pursued to improve model accuracy and
efficiency.

In their recent study, Hirunyawanakul ez al.('¥) introduced an innovative method to enhance
yield prediction in the manufacturing of HDDs. By employing machine learning and statistical
techniques for feature selection, they proposed a fresh approach. They compared this approach
with the conventional method that relies on human expert knowledge, using seven different
feature selection methods: C5, CART, SVM, stepwise regression, genetic algorithm, chi-square,
and information gain. Additionally, two learning algorithms, multiple linear regression (MLR)
and artificial neural networks (ANN), were utilized for yield prediction modeling. The authors
assessed the performance of their approach using root mean square error (RMSE) and mean
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absolute error (MAE), using a real-world dataset obtained from HDD manufacturing. The
outcomes demonstrated that the combination of a genetic algorithm and MLR yielded the best
results, significantly reducing errors compared with the traditional method. They concluded that
their approach offers improved accuracy and efficiency in yield prediction of the HDD
processes..

HDDs are an integral part of many electronic devices today. However, the manufacturing
process of HDDs is complex and prone to defects, leading to potential data loss and increased
costs. Therefore, predicting HDD failure accurately and efficiently is of paramount importance.
In this paper, an approach is proposed that enhances traditional decision tree algorithms with
feature selection techniques to predict HDD failure. This approach applies filter methods, which
are fast, efficient, and generalizable techniques that can handle high-dimensional data and select
the most informative features for modeling. Different criteria such as information gain (IG), gain
ratio (GR), and symmetrical uncertainty (SU) are used to measure the correlation between
features and classes. Three widely used decision tree algorithms, namely, ID3, C4.5, and CART,
which are known for their simplicity and versatility, are also used. The approach is evaluated
using a real-world dataset from an HDD manufacturer and compared with a baseline that uses all
features. It is shown that this approach can achieve higher accuracy, lower computational time,
and fewer features than the baseline. This case study illustrates the potential of this approach for
optimizing decision tree algorithms and enhancing the HDD manufacturing process. It is
believed that this approach can significantly contribute to the field by providing a more accurate,
efficient, and interpretable method for predicting HDD failure. Previous studies have shown the
effectiveness of feature selection techniques in enhancing decision tree algorithms, but they did
not compare different feature selection techniques or decision tree algorithms systematically.
Moreover, some of these studies used complex or computationally intensive methods that may
not be suitable for large-scale or real-time scenarios. In this study, we address these gaps by
introducing a novel method that integrates feature selection techniques with traditional decision
tree algorithms.

In Sects. 2 and 3, a detailed overview of the dataset used in the study, the feature selection
techniques employed, and the decision tree algorithms investigated are provided. In Sect. 4, we
present the results and discussion of the study. Finally, Sect. 5 is a summary of the current work
and also includes suggested directions for future research.

2. Data

The dataset used in this study is a real-world dataset obtained from a hard disk drive
manufacturer, who provided us with the data of a single production timeframe. The dataset
contains information about the components and machines that are used to assemble the hard disk
drives, as well as the defect status of each hard disk drive after the assembly process. The defect
status is labeled as either F (for defective) or P (for non-defective). The dataset has 53451
instances, each representing a hard disk drive, and 43 features, each representing a component or
a machine. All the features and the class label are categorical, meaning that they have a finite
number of possible values. For example, a feature related to a component vendor can have values
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such as V0, V1, V2, etc., indicating different vendors that supply the component. Similarly, a
feature related to an assembly machine can have values such as M0, M1, M2, etc., indicating
different machines that perform the assembly operation. The dataset has 26 features related to
component vendors and 17 features related to assembly machines. The dataset also has a class
imbalance, as there are more non-defective instances (46286) than defective instances (7165).
One of the advantages of the dataset is that it is complete, meaning that there are no missing
values in any of the features or the class label. This ensures the robustness and validity of the
analysis, as there is no need to deal with the uncertainty or inconsistency caused by missing
data.

3. Methodology

In this section, we explain the feature selection techniques and the decision tree algorithms
used in the study, as well as the experimental procedure and the performance evaluation metrics.
It also provides the formulas and definitions of the feature selection criteria, such as IG, GR, and
SU, and the decision tree algorithms, such as ID3, C4.5, and CART. It also outlines the steps
involved in the experimental procedure, such as applying feature selection techniques, ranking
features, training and testing models, and comparing results.

3.1 Feature selection techniques

Feature selection techniques are used to reduce the dimensionality of the data and select the
most relevant features for modeling. This can improve the accuracy, efficiency, and
interpretability of the models, as well as avoid overfitting, noise, and redundancy. This study
employs three feature selection techniques, namely, IG, GR, and SU, to rank the features in
order of importance. These techniques are based on different criteria, such as entropy, split
information, impurity, and correlation, to measure the degree of association between the features
and the class.

Information Gain (IG): This technique measures the reduction in entropy or uncertainty of
the class variable after splitting the data on the basis of a feature. Entropy is a measure of the
randomness or disorder of a system. A high entropy means that the system is unpredictable,
whereas a low entropy means that the system is predictable. The formula for IG is

IG(S,F)=H(S)-H(S|F), (1)

where S is the data set, F' is the feature, H(S) is the entropy of the data set, and H(S|F) is the
conditional entropy of the dataset given the feature. The higher the IG, the more information the
feature provides about the class.

Gain Ratio (GR): This technique is an extension of IG and considers the split information or
intrinsic value of a feature. Split information is a measure of how evenly the data is distributed
among the branches after splitting based on a feature. High-split information means that the data
is evenly distributed, whereas low-split information means that the data is skewed. The formula
for GR is
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where § is the dataset, F' is the feature, /G(S,F) is IG of the feature, and SI(S,F) is the split
information of the feature. The higher the GR, the more balanced the feature is.

Symmetrical Uncertainty (SU): This technique measures the correlation or mutual
information between the feature and the class. Correlation is a measure of how closely the
feature and the class are related. A high correlation means that the feature and the class are
strongly associated, whereas a low correlation means that the feature and the class are weakly
associated. The formula for SU is

IG(S,F)

SU(S,F):ZXW,

G

where S is the dataset, F' is the feature, /G(S,F’) is IG of the feature, H(S) is the entropy of the
dataset, and H(F') is the entropy of the feature. The higher the SU, the more correlated the feature
and the class are.

3.2 Decision tree algorithms

Decision tree algorithms are widely employed in machine learning for their capacity to
represent classification or regression rules in a treelike structure. Each node within the tree
corresponds to a feature, whereas branches depict decision rules, and leaf nodes signify classes.
These algorithms partition data recursively into smaller subsets on the basis of feature values
until a predefined stopping criterion is met. Despite their ease of interpretation, mirroring
human decision-making processes, decision tree algorithms may encounter challenges such as
overfitting, susceptibility to noise and outliers, and sensitivity to minor data variations.

We utilize three prominent decision tree algorithms, namely, ID3, C4.5, and CART, to
develop predictive models for classifying HDDs into passers or defectives, leveraging selected
features.

Iterative Dichotomiser 3 (ID3) was proposed by Quinlan in 1986.(1%) It employs IG as the
feature selection criterion. The algorithm begins by considering the entire dataset as the root
node. Subsequently, for each feature, it calculates IG concerning the class variable and selects
the feature with the highest IG as the splitting feature. This iterative process continues until all
instances within a branch belong to the same class or there are no more features to be split.

C4.5, an extension of ID3 proposed by Quinlan in 1993,(1%) addresses several limitations of its
predecessor. It utilizes GR instead of IG as the feature selection criterion and handles missing
values, continuous features, and pruning. Similar to ID3, C4.5 begins with the entire dataset as
the root node. For each feature, it calculates GR with respect to the class variable and selects the
feature with the highest GR as the splitting feature. Additional steps are undertaken for handling
continuous features and missing values, followed by pruning to enhance model accuracy.
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CART, or classification and regression trees, proposed by Breiman et al(7) in 1984, is a
versatile algorithm capable of addressing both classification and regression tasks. It employs
Gini impurity as the feature selection criterion. CART commences by considering the entire
dataset as the root node. For each feature, it calculates the Gini impurity with respect to the class
variable and selects the feature with the lowest Gini impurity as the splitting feature. Similar to
previous algorithms, CART iteratively partitions the data until a stopping criterion is met,
followed by pruning to refine model accuracy.

Despite their effectiveness, all three algorithms may be prone to overfitting and exhibit
biases towards multilevel features. However, they remain widely utilized in machine learning
owing to their adaptability and versatility in handling diverse datasets and conditions.

3.3 Experimental procedure

The experimental procedure aims to evaluate the performance of different decision tree
algorithms and feature selection techniques in predicting HDD failure. It also compares the
results with a baseline that uses all features. The procedure involves the following steps and is
illustrated in Fig. 1. The program used to implement the procedure is R-3.6.3 software.

1. Start with the HDD data and prepare it for analysis.

2. Apply the three feature selection techniques (IG, GR, and SU) to compute the feature
importance for all 43 features.

3. Rank the features by their importance for each feature selection technique.

4. Use the three decision tree algorithms (ID3, C4.5, and CART) to train and test models with
all features as a baseline.

5. Train and test models using the ranking of each feature selection. Add one feature at a time
from the top until the highest accuracy is achieved. Repeat this step for the top 20 features for
each feature selection technique.

6. Use threefold cross-validation to evaluate the performances of the models in terms of
accuracy, efficiency, and interpretability.

7. Compare the results of the models with the baseline using statistical tests and report the
p-values and the 95% confidence intervals.

8. Conclude the procedure and summarize the findings.

We employ threefold cross-validation, where one fold is designated as the test data, while the
remaining two serve as the training data. Performance evaluation of the models encompasses
accuracy, efficiency, and interpretability. Accuracy is gauged using the confusion matrix,
delineating correct and incorrect classifications for each class. Efficiency is quantified by the
total time required to construct the models, encompassing feature selection, training, and testing
durations. Interpretability is assessed through the top N features used in the generated models,
indicative of their simplicity and clarity.

Additionally, we conduct statistical tests to juxtapose mean accuracy values and total time
between each model and the baseline, with a predetermined significance level of 0.05. The
results provide p-values and 95% confidence intervals that are used to elucidate the likelihood
and range, respectively, of observing the results under the null hypothesis.
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Fig. 1. (Color online) Methodology flow chart.

4. Results and Discussion

Table 1 presents the accuracy of each decision tree algorithm when using all features and
each feature selection technique. The table also includes the minimum and maximum values of
the 95% confidence intervals for each accuracy value, which represent the range of potential
accuracy values if the experiment were to be conducted with different data samples.

From the data in Table 1, it is evident that the C4.5 algorithm using the IG feature selection
technique achieved the highest accuracy, with a mean value of 0.88172. This is closely followed
by the ID3 algorithm also using the IG technique, with a mean value of 0.88083. The CART
algorithm using all features yielded the lowest accuracy, with a mean value of 0.87138. The non-
overlapping confidence intervals for most cases indicate that these differences in accuracy are
statistically significant.
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Table 1
Accuracy of each decision tree algorithm at 95% confidence interval between all features, IG, GR, and SU.
Decision Tree Algorithm  Feature Selection Technique Accuracy Minimum Maximum
All Features 0.87476 0.87307 0.87646
D3 IG 0.88083 0.87984 0.88181
GR 0.88058 0.88010 0.88106
SU 0.88056 0.87999 0.88114
All Features 0.87759 0.87654 0.87864
cas IG 0.88172 0.88144 0.88201
GR 0.88073 0.88034 0.88113
SU 0.88170 0.88142 0.88199
All Features 0.87138 0.86952 0.87324
IG 0.88084 0.87952 0.88217
CART GR 0.88053 0.87997 0.88108
SU 0.88056 0.87999 0.88114

These results suggest that feature selection techniques can enhance the accuracy of decision
tree algorithms, since models using these techniques outperformed those using all features.
Among the feature selection techniques, IG was the most effective, followed by SU and GR.
This indicates that these techniques can efficiently identify the most relevant and informative
features for predicting HDD failure. In terms of decision tree algorithms, C4.5 and ID3
outperformed CART, suggesting that these algorithms can generate more accurate and robust
models for the given dataset.

Table 2 shows the top N features for building models using different decision tree algorithms
and feature selection techniques. The table indicates that feature selection techniques can
significantly reduce the number of features required for modeling compared with using all
features. This can improve the efficiency and interpretability of the models, as well as avoid
overfitting, noise, and redundancy. Among the feature selection techniques, IG was the most
effective, followed by GR and SU. This suggests that these techniques can efficiently identify
the most relevant and informative features for predicting hard disk drive failure. In terms of
decision tree algorithms, C4.5 and ID3 outperformed CART, as they required fewer features to
achieve comparable or higher accuracy. This implies that these algorithms can generate more
accurate and robust models for the given dataset.

Table 3 presents the total time required for building models using different decision tree
algorithms and feature selection techniques. It is observed that the ID3 algorithm with the I1G
feature selection technique had the shortest total time of 9.4 s, indicating that this combination is
the most efficient. On the other hand, the CART algorithm with the SU feature selection
technique had the longest total time of 37.2 s, suggesting that this combination is the least
efficient.

In summary, the results in Tables 1-3 suggest that feature selection techniques, particularly
Information Gain (IG), can significantly improve the accuracy and efficiency of decision tree
algorithms. IG is an efficient and effective feature selection technique when integrated with
decision tree algorithms because it can identify the most relevant and informative features for
predicting the class variable. By using IG, decision tree algorithms can reduce data
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Table 2
Top N features for building models.
Decision Tree Algorithm Feature Selection Technique Top N Features
All Features 43
IG 7
D3 GR 9
SU 9
All Features 43
1IG 6
C4.5 GR 10
SU 10
All Features 43
IG 6
ART
¢ GR 9
SU 9
Table 3
Total time required for building models (second).
Decision Tree Algorithm Feature Selection Technique Total time
All Features 48.0
1IG 9.4
1D3 GR 9.8
SU 14.4
All Features 42.5
IG 13.7
C4.5
GR 17.8
SU 20.6
All Features 50.2
IG 25.3
CART GR 30.2
SU 372

dimensionality, avoid overfitting, noise, and redundancy, and improve the accuracy, efficiency,
and interpretability of the models.

The integration of IG with three decision tree algorithms (ID3, C4.5, and CART) varies in
effectiveness depending on the characteristics of the dataset and the application domain. For
instance, ID3 and C4.5 are more suitable for categorical features, whereas CART can handle
both categorical and continuous features. ID3 and C4.5 use entropy as the measure of impurity,
whereas CART can use either entropy or Gini impurity. C4.5 uses normalized IG or gain ratio as
the splitting criterion, whereas ID3 uses the raw IG value. ID3 and C4.5 are more prone to
overfitting, whereas CART uses pruning to avoid overfitting. ID3 and C4.5 are more popular in
machine learning and natural language processing, whereas CART is more versatile and can be
used for both classification and regression tasks.

However, the specific choices of the decision tree algorithm and feature selection technique
may depend on the acceptable trade-off between accuracy and computational efficiency for a
given application. The IG feature selection technique was found to be the most effective and
efficient across all decision tree algorithms, affecting the total time required for building models.
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5. Conclusions

We presented a novel approach to enhance traditional decision tree algorithms by integrating
feature selection techniques. The objective of this method is to enhance the accuracy and
efficiency of decision tree models in predicting HDD failure. To assess the effectiveness of this
approach, experiments were conducted on a real-world dataset from an HDD manufacturing
process. Three feature selection techniques (IG, GR, and SU) and three decision tree algorithms
(ID3, C4.5, and CART) were utilized. The outcomes revealed that feature selection techniques
have a significant impact on improving the accuracy of decision tree algorithms, but they also
influence the time required to build models. Among the feature selection techniques, IG was
found to be the most effective and efficient across all decision tree algorithms. Moreover, IG can
reduce the number of features needed for modeling, which can improve the interpretability and
robustness of the models. This proposed method has enormous potential for optimizing decision
tree algorithms and enhancing the HDD manufacturing process. Future research should explore
other feature selection techniques, decision tree algorithms, and datasets to validate and
generalize the findings of this study.
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