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 In this paper, we discuss the classification of images captured by a machine camera while 
assembling components. To crop out specific points of interest, we employ image processing. 
Additionally, we utilize deep learning techniques, specifically convolutional neural networks, to 
identify the type of equipment being assembled. This approach allows us to determine and 
record specific parts within a device. However, the main challenge of this project is to achieve 
both high accuracy and the shortest possible prediction time.

1. Introduction

 In the electronic industry, one of the methods of assembling a product is the clamp mount 
method, and screws are used to tighten the platter stack in the product. Each clamp used is 
unique to each manufacturer. In the past, the clamp manufacturer was not specified during the 
assembly stage. When customers provide feedback regarding issues of the clamp installation 
process, it becomes challenging to determine which manufacturer assembled the product. 
Therefore, production team consider incorporating image processing(1) techniques and machine 
learning to enhance the manufacturing process. However, we found problems with image 
processing and machine learning. For image processing, too many methods are used (e.g., 
threshold,(2) xor, floodfill, and Convex Hull). The image captured by the machine shows clamp 
stacking, which can be seen through another clamp. Such problems could impact the original 
image, potentially altering its appearance, and affecting assembling time during production. For 
machine learning, the present model was trained only on images that detect the dots. Thus, it is 
difficult to clarify all images and the prediction result will be inaccurate if there are not enough 
images relative to the number of manufacturers.
 To further enhance the efficiency of the manufacturing process, we propose to perform 
image reprocessing and utilize convolutional neural networks (CNNs)(3–7) in this study, we 
achieve an accuracy above 95%, maintain a model file size of less than 20 MB, and process each 
image for a prediction time of less than 30 ms.

http://
https://doi.org/10.18494/SAM5000
https://myukk.org/


1432 Sensors and Materials, Vol. 36, No. 4 (2024)

2. Data, Materials, and Methods

2.1 Data collection

 The overall images of eight manufacturers are shown in Fig. 1. Images were captured by a 
machine camera and saved in a folder that is categorized by labels with the names of different 
manufacturers. This study includes a total of 13,625 images that were taken during the 
production process. The size of each image is 640 × 480 pixels.
 To determine the clamp of a manufacturer, count the dots starting from the timing mark and 
count the dots clockwise including the white space, as shown in Fig. 2.
 Table 1 shows the specifications of the dot locations of eight manufacturers; black circles 
refer to dots and white circles refer to the absence of dots.

2.2 Image processing

 Image processing refers to operations applied to an image to enhance or transform it. The 
input is an image, and the output can be another image or features related to that image, such as 

Fig. 1. (Color online) Images of eight classes (manufacturers).

Fig. 2. (Color online) Sample dots and timing mark.
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pixel values, vectors, or RGB colors. In this study, we utilized the Open-Source Computer Vision 
Library (OpenCV),(7) which is an open-source library. OpenCV is a powerful tool for computer 
vision and is useful in machine learning applications. It enables us to process images and videos, 
allowing us to perform tasks such as object detection and facial recognition. Specifically, we 
used OpenCV to process images using various techniques such as adaptive histogram 
equalization,(8) contrast-limited adaptive histogram equalization (CLAHE),(8) HoughCircles, 
and findContours.(9) These methods allow us to crop regions of interest(9) and reduce image size.
 With our latest image processing technology, we have revolutionized the reprocessing of 
images. As shown in Fig. 3, our new method requires significantly fewer steps compared with 
the previous method. This translates into quicker and more efficient image reprocessing, saving 
valuable time and resources.
 The problem with capturing images of machines is that one may accidentally capture the 
lower layer of another clamp when clamps are stacked in a slot before assembling the product, as 
shown in Fig. 4.

2.3 CNN model

 The CNN model is widely used for image classification, and we have chosen three pre-
trained CNN models that could work well with our data. We have also created a custom model 
with a basic architecture to test the data’s validity.

2.3.1 Custom model 

 CNN architecture is designed to extract features from complex visual data using specialized 
layers within the network. It is composed of three fundamental layer types. 
 The first is the convolution layer, which extracts features from input data. It uses a set of 
learnable filters called kernels applied to the image, with each kernel specifying specific 
characteristics that the convolution operation aims to filter. In this study, we utilized the Conv2D 
layer.
 The second is the pooling layer, which serves to reduce the dimensionality of the input and 
decrease the number of parameters. Pooling filters do not possess weights. In this article, we 
utilize the MaxPooling2D layer.

Table 1
Specifications of dot locations of eight manufacturers.

Manufacturer Dot location
1 2 3 4 5 6 7 8 9 10 11 12

1 ● ○ ● ○ ● ○ ● ○ ○ ○ ○ ○
3 ● ○ ● ● ○ ○ ● ○ ○ ○ ○ ○
A ● ○ ○ ○ ○ ○ ● ○ ○ ○ ○ ○
C ● ○ ○ ○ ● ○ ○ ○ ○ ○ ○ ○
F ● ○ ○ ● ○ ● ● ○ ○ ○ ○ ○
I ● ● ● ○ ○ ○ ● ○ ○ ○ ○ ○
Q ● ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
U ● ● ○ ● ● ○ ● ○ ○ ○ ○ ○
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 Finally, the fully connected layer, also known as the dense layer, of the CNN model, is 
connected to the previous layer and computes the last classification.
 In this study we use a custom model architecture 2-layered CNN model, as shown in Table 2. 
The model includes two CNN layers, with the first layer being an input CNN layer with a shape 
of 110 × 110 × 3. All the layers use rectifier linear unit activation (ReLU).(10) The max pool layer 
with a filter size of 2 × 2 is fed with the output of the first and second CNN layers. The image 
kernel size is set to 4 × 4, with a required padding and stride of one. The output of the 2D CNN 
layers is flattened, and the extracted features are then fed to a block of two fully connected 
layers with ReLU activation and SoftMax,(11) as shown in Fig. 5.
 In the training log, the model training was observed to be effective for eighty epochs, as 
evident from the accuracy and loss training results. However, beyond this point, the 
model started to overfit, as illustrated in Fig. 6. To compare the variation of validation 
loss and accuracy over the training steps, the data in Fig. 6 was analyzed. The results 
showed that as the validation loss decreased, the validation accuracy increased 
subsequently.

2.4 TFLite converter

 TFLite Converter(12) is a TensorFlow tool that converts machine learning models to a mobile 
and embedded device-friendly format. TFLite is a lightweight TensorFlow version optimized for 

Fig. 3. (Color online) Image processing steps.

Fig. 4. (Color online) Problem of capturing images from a machine, which can fail to detect lower-layer dots. 
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these devices. It enables machine learning models to be accessible and usable on a wider range 
of devices.
 In this study, we utilized TensorFlow Lite Converter to minimize the model size and 
processing time, although this may result in a lower model accuracy. The flow of TFLite 
conversion is shown in Fig. 7.

Table 2
Custom model architecture.
Layer Output Shape Parameter
rescaling_5 (Rescaling) (None, 110, 110, 3) 0
conv2d_9 (Conv2D) (None, 107, 107, 16) 784
max_pooling2d_8 (MaxPooling 2D) (None, 53, 53, 16) 0
conv2d_10 (Conv2D) (None, 50, 50, 32) 8224
max_pooling2d_9 (MaxPooling 2D) (None, 25, 25, 32) 0
flatten_5 (Flatten) (None, 20000) 0
dense_10 (Dense) (None, 64) 1280064
dense_11 (Dense) (None, 8) 520
Total parameters: 1289592
Trainable parameters: 1289592
Non-trainable parameters: 0

Fig. 5. (Color online) Two-layered CNN model.

Fig. 6. (Color online) Accuracy and loss of training phase.
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3. Experimental Results

 We tested four different CNN models using 20% of 13,625 images. After analyzing the 
results of the experiment, we observed that the custom model had the highest accuracy among 
the models considered. However, its prediction time was still longer than the desired objective of 
less than 30 ms Additionally, the prediction time of the model with the second highest accuracy, 
ResNet50,(13–15) was also very high, as shown in Table 3.

3.1 Improvement of result

 As shown in Table 4, we converted the model using the TFLite Converter method and 
revalidated it. The accuracy remained unaffected; however, the prediction time of the custom 
model significantly decreased from 47.1 to 6.1 ms (87% reduction). Additionally, the model file 
size decreased from 14 to 5 MB, achieving a 64% reduction. Both improvements align with the 
objectives of this study and surpass those of the other three models.

3.2 Evaluation of model performance

 To evaluate the performance of the four models, we used a confusion matrix(16) with four 
quadrants: true positive (TP),(17) false positive (FP),(17) true negative (TN),(17) and false negative 
(FN),(17) as shown in Fig. 8.
 To calculate the accuracy based on TP, FP, TN, and FN values, the equation below is used.

 TP TNAccuracy
TP FP TN FN

+
=

+ + +
 

 The calculation results shown in Table 5 included precision, recall, and the F1-score to 
measure the performance of the classification models. 

Fig. 7. (Color online) Flow of TFLite conversion. 



Sensors and Materials, Vol. 36, No. 4 (2024) 1437

Table 3
Comparison of five models.
Model Accuracy (%) Prediction time (ms)/image File size (MB)
Custom model 97.05 47.1 14
VGG16 89.63 79.8 60
ResNet50 90.52 78.9 104
BiMobileNetV2 82.20 89.7 23
Previous model 77.38 14.8 6

Table 4
Comparison of five converted TFLite models.
Model Accuracy (%) Prediction time (ms)/image File size (MB)
Custom model 97.05 6.1 5
VGG16 89.63 154.1 63
ResNet50 90.52 66.4 95
BiMobileNetV2 82.20 35.7 13
Previous model 77.38 14.8 6

Fig. 8. (Color online) Confusion matrix of four CNN models.
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4. Conclusions

 To enhance the accuracy and prediction time of image classes during product assembly, we 
revised the image processing method to retain the original production images. This approach 
helps avoid missing dot detection and employs a more efficient technique. Additionally, we 
improved the model performance by utilizing CNN models. The accuracy rates for the custom 
model, VGG16, ResNet50, and BiMobileNetV2 were 97.05, 89.63, 90.52, and 82.20%, 
respectively; the previous model’s accuracy was 77.38%. The prediction times of the custom 
model, VGG16, ResNet50, and BiMobileNetV2 were 6.1, 154.1, 66.4, and 35.7 ms, respectively.
 In future studies, we can explore image processing techniques for object detection. This is 
particularly relevant because clamp manufacturers can exhibit a higher complexity than simple 
dots.
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