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 In contemporary hard disk drive (HDD) manufacturing processes, after the assembly of the 
HDD from the production line, a series of diverse calibration procedures are necessary to ensure 
standardization. These include capacity calibration, which determines the storage space in 
terabytes (TB) presently available, and flying height (FH) calibration, which evaluates the 
distance between the head and the disk by applying electric current to the heater coil element to 
achieve the desired FH, thus optimizing the writing and reading performance and tailoring it to 
each HDD. Additionally, electric current is saved in a digital-to-analog converter (DAC) unit for 
the utilization of a read/write head, while a preamp collaborates with the drive firmware to 
convert the electric current in the DAC unit to milliwatts. In the present scenario, multiple 
calibrations of flying heights (FHs), specifically flying height 1 (FH1) and flying height 2 (FH2), 
are performed. Each FH calibration requires a testing time of approximately 5 h owing to the 
separation of measurement points into 240 locations across the disk surface, referred to as test 
zones, with a total of 20 heads. The primary objective of this study is to reduce the testing time 
by using a combination of deep neural network (DNN) and particle swarm optimization 
techniques to predict the DAC profiles of FH2 as it approaches FH1, where FH1 is the input for 
the DNN model.

1. Introduction

 In hard disk drive (HDD) manufacturing, the calculation of the flying height (FH) for read/
write heads is crucial to ensure efficient and effective read/write operations that are optimized 
for each HDD. Dakroub et al.(1) studied the measurement of FH for an HDD by examining the 
amplitude of the signals used in this process. Schardt et al.(2) developed a technique for 
measuring FH, which involves the movement of read/write heads from the inner track to the 
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outer track of the disk. Novotny(3) developed a novel technique for characterizing the magnetic 
amplitude to investigate the spacing between the read/write heads and the high-bandwidth disk 
during track seeking, head parking, vibrations, and shocks while the HDD is operational. This 
investigation involved the measurement of magnetic flux densities to assess the magnetic 
profiles. Juang et al.(4) performed a nonlinear modeling of the read/write head, accurately 
simulating its protrusion, which affects the variation in FH under different environmental 
conditions. Boettcher et al.(5) performed a dynamic FH measurement with feedforward control 
to optimize variations.
 These studies attempted to find methods for obtaining read/write heads with optimal and 
efficient FH profiles. In this study, we propose a novel approach by combining a deep neural 
network (DNN) with an enhanced particle swarm optimization (PSO)(6–15) algorithm to find a 
suitable number of nodes for each hidden layer of the DNN. This innovative approach uses AI 
techniques, specifically a DNN, in conjunction with improved PSO techniques to predict the 
digital-to-analog converter (DAC) profiles of flying height 2 (FH2) with optimal performance. 
By employing this methodology, it is anticipated that the amount of FH measurement and the 
operation of the read/write head will be significantly reduced. This would result in a highly 
accelerated FH measurement process while maintaining comparable efficiency to conventional 
measurement methods. We aim to reduce the production time per unit in the manufacturing line 
of an HDD, as shown in Fig. 1, and for measuring the DAC profiles for flying height 1 (FH1) and 
FH2, which currently takes approximately 5 h (Fig. 2). In this way, we can reduce the 
measurement time of FH2 using an AI-based approach.

2. Experimental Procedure

2.1 Point of interest in FH measurement

 The process of measuring the FH of the read/write head involves measuring the protrusion 
value in the DAC unit, which is from the tip of the read/write head to the position called the 
target FH at point B in Fig. 3. Distance A refers to the thermal protrusion in the DAC unit, the 
focus of this study.

Fig. 1. (Color online) FH measurement process and test time reduction concept for FH2 measurement.
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2.2 Deep neural network based on particle swarm optimization

 In this study, we present a novel method of FH prediction using a DNN combined with an 
efficiency-enhanced PSO algorithm, called DNNpso. The objective is to find an appropriate and 
efficient number of nodes in the hidden layers for predicting the FH profile, which is measured 
in the DAC unit, as shown in Fig. 4.

2.3 Preparation of data and evaluation criterion

 Preparing data for training involves utilizing information from 50 HDDs, each comprising 20 
read/write heads across 240 zones. Consequently, there is a dataset of 240,000 points (50 × 20 × 
240) for training the DNN model. This dataset is partitioned into 80% for training and 20% for 
validation. The input features for the model include the DAC value for FH1, the head, the zone, 
the current, and the default current. The output result is the DAC value for FH2, as shown in the 

Fig.	2.	 (Color	online)	Profile	of	DAC	for	FH1	and	FH2	measurements.

Fig. 3. (Color online) Points of interest in head reading/writing for FH measurement.
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relationship depicted in Fig. 5. Data input relationships are sequenced using the Bootstrap Forest 
method, which is based on the Decision Trees method, as shown in Fig. 6. In this study, three 
hidden layers are utilized in the DNN. PSO is utilized to determine the appropriate number of 
nodes using Eqs. (1) and (2). Objective functions are defined on the basis of the R2 metric, as 
outlined in Eq. (3), derived from the FH measurements of the actual HDD and the values 
predicted with the model. The DNN model is trained using the mean square error (MSE) as the 
loss function, represented by Eq. (4). The DNN utilizes the backpropagation algorithm to 
calculate the derivatives of the error with respect to the weights from the previous iteration, then 
the weights are adjusted to minimize the error, as depicted in Eq. (5).
 Particle swarm optimization (PSO):

 ( ) ( )1 1 1 2 2 i i i i i
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Fig. 4. (Color online) DNNpso architecture.
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 Mean square error:
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Fig. 5. (Color online) Relationship between input and output.

Fig. 6. (Color online) Arrangement of input relationships using Bootstrap Forest method.
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 Backpropagation algorithm (for DNN):
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In these equations, y represents true values, y̅ denotes predicted values, µ is the mean of the true 
values, and n is the number of data points in the dataset. Generally, a lower MSE signifies more 
accurate predictions, namely, the predicted values y̅ closely align with the true values. R2 is a 
metric for the goodness of fit in regression and ranges between 0 and 1, with a score of 1 
indicating perfect prediction and higher values indicating better predictive performance.
 The backpropagation algorithm, employed in the training phase of the DNN, involves 
parameters including wx and error. wx represents the weights and error denotes the error from 
the previous iteration. The parameter α signifies the learning rate. The algorithm iteratively 
updates the weights, forwarding them to *wx, during each training cycle.
 PSO aims to determine a suitable and efficient number of nodes for the hidden layers in a 
DNN. In this context, w represents the momentum coefficient, V is the velocity of the particle, X 
denotes the position of the particle, and c1 and c2 are random constants within the range [0, 1]. 
pb (pbest) refers to the particle’s personal best, which is the highest objective function value the 
particle has encountered locally, and gb (gbest) is the highest objective function value 
encountered globally over all previous iterations. i is the number of iterations and t is the current 
particle.

3. Results and Discussion

 From the experiments conducted with DNNpso, it was observed that the particle swarm 
group effectively aids in determining a suitable number of nodes for each hidden layer. In this 
study, a Particle Swarm of 10 was employed and 20 iterations were performed, where the 10 
particles attempted to find directions to adjust the number of nodes to align with the objective 
function, using R2 as the performance indicator. This process was repeated for 20 iterations, 
giving a consistent R2	of	≈	0.96,	as	shown	in	Fig.	7	and	Table	1.	Furthermore,	we	attempted	to	
identify the optimal number of iterations for this study. It was observed that after 10 iterations, 
there was only a marginal improvement in R2, as shown in Fig. 8. Consequently, we set the 
number of iterations at 20.
 A detailed examination of the experimental results for each particle swarm reveals variations 
among the swarms. It is observed that a favorable R2 obtained from DNNpso indicates a strong 
relationship between the actual FH measurements and the predictions from the 20% validation 
dataset, as shown in Fig. 9 in which the green-bordered frame indicates the highest R2 and the 
best correlation, and therefore the optimal performance of PSO. The distribution of R2 for each 
particle swarm is shown in Fig. 10.
 After obtaining a satisfactory model, it was saved for future use. The model was then tested 
using data from 40 HDDs, which were not part of the 80% training or 20% validation group. The 
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Fig. 7. (Color online) Experimental results of DNNpso with R2 as the objective function.

Fig. 8. (Color online) Experimental outcomes of adjusting iterations in DNNpso.

Table 1
Experimental	results	of	repeated	model	training	with	selected	configuration	to	find	the	best	objective	function	(R2).
Run Iterations Particle swarm Epochs (DNN) MSE R2 Training time (s)
1 20 10 10 0.000203 0.9690 21.0744
2 20 10 10 0.000200 0.9692 10.0495
3 20 10 10 0.000199 0.9695 26.4638
4 20 10 10 0.000202 0.9691 45.4285
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experiments	yielded	promising	results	with	a	correlation	of	≈	0.98	(R2	≈	0.97),	as	shown	in	Fig.	
11. This value indicates a high accuracy and a strong correlation between the actual FH 
measurements and the values predicted with the model. The boxplot exhibits uniformity, with a 
mean value of approximately 120 DAC and a standard deviation of around 12.8, and the 
cumulative distribution function (CDF) probability [Eq. (6)] was consistent between the actual 
FH measurements and the corresponding predictions, as shown in Fig. 12.

 
( ) ( ) ( )

[ ]

 

 0,  255 , :
i

x i
x x

F x P X x P X x

x x DAC
<

= ≤ = =

∈

∑
 (6)

 Furthermore, the DAC profile, which is a comprehensive representation derived from both 
actual measurements and predictions, demonstrates a highly satisfactory alignment between the 
two, as clearly illustrated in Fig. 13. Moreover, DAC profiles are dissected for each read/write 
head. The experimental results exhibit consistently good performance, as depicted in Fig. 14. 
Detailed statistical values such as mean and standard deviation can be extracted from Fig. 12. 

Fig. 10. (Color online) Distribution of R2 in DNNpso for each particle swarm.

Fig. 9. (Color online) Experimental results of comparative analysis of relationship between number of iterations 
and R2 in DNNpso for each particle swarm.
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Fig. 11. (Color online) Correlation values obtained 
from actual measurements and predictions using the 
new HDD group.

Fig. 12. (Color online) Boxplot and CDF obtained from 
actual measurements and predictions using the new 
HDD group.

Fig.	13.	 (Color	online)	DAC	profile	resulting	from	the	actual	measurements	and	predictions	of	FH2	from	the	new	
HDD group.
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4. Conclusions

 We present an approach to FH measurement using the predictive power of a DNN based on 
PSO, termed as DNNpso. This method helps determine an appropriate and efficient number of 
nodes in hidden layers and is a novel approach to FH measurement that can be applied seamlessly 
to AI. The predictive capability significantly reduces the time required for FH measurement; 
therefore, it is expected to play a crucial role in streamlining the production of HDDs. The 
utilization of data from the source FH1 demonstrates the effectiveness of accuracy in predicting 
FH2 efficiently.
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