
2337Sensors and Materials, Vol. 35, No. 7 (2023) 2337–2354
MYU Tokyo

S & M 3326

*Corresponding author: e-mail: qfwu@xmu.edu.cn
https://doi.org/10.18494/SAM4312

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Model for Effectively Extracting Mixed Features and 
Classifying Emotions from Electroencephalograms

Shijing Zhang,1 Qunsheng Ruan,2 Lixia Huang,3 and Qingfeng Wu4*

1Institute of Education, Xiamen University,
Siming South Road No. 422, Siming District, Xia Men 361000, China

2Department of Nature Science and Computer, Ganzhou Teachers College,
Gannan Da Road No. 35, Rongjiang New District, Gan Zhou 341000, China

3School of Information, Mechanical and Electrical Engineering, Ningde Normal University,
College Road No. 1, Dongqiao Development District, Ning De 352100, China

4School of Film, Xiamen University, Siming South Road No. 422, Siming District, Xia Men 361000, China

(Received January 7, 2023; accepted June 7, 2023)

Keywords: EEG, emotion recognition, wavelet packet transform, chaos theory, mixed feature set

 Emotion recognition is gaining increasing attention from researchers and health professionals, 
and it has become a hot research topic in recent years. However, there have been no fruitful 
achievements on emotion recognition owing to the low quality of features extracted from the 
original electroencephalogram (EEG) and low emotion recognition rate. In this study, we extract 
time–frequency domain and chaotic features from human electroencephalogram signals using 
wavelet packet transform and chaos theory. The two types of features are combined to generate a 
mixed feature set with low dimensions. Then, we propose a one-to-one long short support vector 
machine (LS-SVM) classifier based on the Gauss function for multiclass classification problems. 
Focusing on the indivisible classified regions in the decision model, we combine the distribution 
of samples with distance between samples and separating hyperplanes, and then establish a 
discriminant function for fuzzy classification in the one-to-one LS-SVM. Three groups of 
comparative experiments, namely, feature selection and dimensionality reduction, the 
effectiveness of optimized LS-SVM, and the classification of different types of feature set, are 
conducted. The experimental results for the mixed feature set demonstrate that the proposed 
classification model has a competitive performance.

1. Introduction

 Human emotion recognition is a popular interdisciplinary research topic and has attracted 
attention from fields such as neuroscience, physiology, and computer science. In computer 
science, emotion recognition plays an important role in human–computer interaction and is 
useful for modeling more user-friendly systems.(1) Although recent advances in artificial 
intelligence (AI) have enabled computers to solve many problems as efficiently as humans, they 
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are still unable to perform certain tasks. Therefore, in order to strengthen the communication 
between humans and machines, especially to develop a more perceptual communication 
between humans and computers, and to promote further development of human–computer 
interaction technology, it is important to understand human emotions and recognize them in the 
context of AI.(2,3)

 Emotion classification for humans is studied using data of biological electroencephalogram 
(EEG) signals, which are formed by the weak current generated by the activity of neurons in the 
brain. EEG signal data can be collected using professional biosensor equipment. EEG-based 
emotion classification is considered more reliable than other approaches such as facial expression 
and gesture analysis, as EEG data cannot be easily faked. In this study, we mainly focus on two 
main tasks: extracting high-level informative features from EEG data and optimizing an existing 
classification model for emotion recognition. We use the SJTU Emotion EEG Dataset (SEED), 
for which the experiments of emotion induction, data collection, and preprocessing have been 
systematically completed. Our work mainly focuses on the feature extraction, feature selection 
and dimensionality reduction, training, and validation of classification models. In summary, the 
novelty of this paper is as follows.
 (I) Extraction of high-level features from EEG signals. Unlike traditional methods of 
frequency band equalization, we use wavelet packet transform to extract five major frequency 
bands of EEG signals and then calculate the power spectral density (PSD) and energy 
characteristics of each frequency band separately on the basis of the physiological classification 
of EEG signals.  In addition, aiming at the randomness, nonlinearity, and nonstationarity of EEG 
signals, we apply chaos theory to calculate chaotic parameters of the signal and use them as 
chaotic features. The time–frequency domain and chaotic features are combined to generate a 
novel set of mixed features for emotion classification.
 (II) Building a classification model for emotion recognition and its optimization. We use long 
short support vector machine (LS-SVM) based on Gauss kernels as a classifier. The cross-
validation method is applied to test the effectiveness of the model and the grid search method to 
optimize parameters. 
 (III) We divide emotions into positive, negative, and neutral categories on the basis of the 
EEG signal, and use a one-to-one classification approach to solve the multiclassification problem 
of the traditional SVM. In view of the possible nonclassifiable regions, we propose a new 
discriminant function to solve the problem of fuzzy classification, taking into account the 
distribution of samples and the distance between samples and separating hyperplanes.
 The rest of this paper is as follows. The related works are discussed in Sect. 2. The process of 
mixed feature extraction is annotated in detail, and the design of emotion recognition 
classification is described in Sect. 3. Various experiments are performed, and the experimental 
results are showcased and analyzed in Sect. 4. Section 5 concludes our work.

2. Related Work

 Recently, emotion recognition has attracted attention from researchers of behavioral sciences, 
medicine, and AI. In AI, a number of studies have been conducted to classify human emotions 
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based on physiological signals, and comprehensive research results have been emerging. 
Compared with other features such as facial expression, voice intonation, and body language, 
physiological signals have shown better results. However, data collection from these signals is 
considered difficult as these signals are noisy and have spontaneous and uncontrolled 
characteristics. Because these signals are difficult to disguise and hide, they are informationally 
efficient and yield highly authentic and reliable results. Schaaff and Schultz used the 
international affective picture system, which is intended to induce three types of emotions, 
namely, positive, negative, and neutral, in the subjects.(4) The EEG signals of the prefrontal 
region of the subjects were collected as experimental data to study the three types of emotions. 
Their experimental results show that the recognition accuracy is about 0.47. Lin et al. introduced 
the energy characteristics of EEG signals into the study of emotion recognition.(5) Considering 
that the energy states of the left and right brain are not completely symmetrical in different 
emotional states, two EEG features based on the asymmetric energy difference and asymmetric 
entropy were proposed for the first time. This study not only provided good results in emotion 
recognition, but also confirmed the relevant theoretical research of neurophysiology from the 
experimental viewpoint.(6,7) Koelstra et al. selected 40 music videos as motivating materials to 
conduct situational experiments on 32 subjects.(8) In accordance with the situation dimension 
model, they collected physiological signals of subjects in different situations, including 32 
channels of EEG signals and eight groups of peripheral physiological signals, namely, skin 
electricity, skin temperature, breathing, blood pressure, and eyespot, and recorded the subjects’ 
facial conditions with video cameras. Then, a database named DEAP for emotion recognition 
research was formed. The database also provides a subjective evaluation of each subject’s own 
situation in four dimensions: effective price, aesthetic sensitivity, goodness trend, and preference 
in each experiment. Each group of data collected in experiments by each group of physiologists 
was labeled.(9,10) 
 The general time-domain statistical characteristics of electrical signals can also be applied to 
EEG signals. These measures are simple and easy to calculate and can yield good recognition 
results.(11,12) To remove the disadvantage that the time-domain characteristics cannot show the 
frequency information of the signal, researchers have added frequency-domain analysis in the 
preprocessing of EEG.(13) The process steps are as follows.
 Firstly, the original time-domain signal is converted to the frequency domain to obtain the 
spectrum. 
 Secondly, the frequency band is decomposed into five sub-bands (δ, θ, α, β, and γ) that are 
closely related to human psychological activity.(14,15)

 Finally, the five sub-bands are analyzed or counted.
 There are some methods that can be used to deal with EEG. Fourier transform (FT) is usually 
used for time–frequency domain conversion. The signal is projected onto a fixed orthogonal 
function system, and a set of transformation coefficients is used to represent the time function. 
Each spectrum indicates many parameters such as the phase and amplitude of a certain 
frequency component.(16,17)

 Generally, in the current EEG-based emotion recognition research results, there are 
deficiencies such as poor data extraction quality and low emotion prediction accuracy.
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3.	 Design	 of	Mixed	Feature	Extraction	 and	Emotion	Recognition	Classification	
Model

3.1 General model framework

 In this section, we will showcase an overall framework of mixed feature extraction and 
emotion recognition classification using EEGs, which mainly includes the following three steps: 
data preprocessing, feature selection, and emotion recognition or classification. Our aim is to 
obtain the time–frequency domain eigenvector and chaotic eigenvector through data 
preprocessing. On the basis of the two types of eigenvectors, mixed eigenvectors are formed by 
feature selection. Finally, we will build a classification algorithm based on the mixed 
eigenvectors from the original EEG. The general model framework is shown in Fig. 1. 

3.2 Feature extraction in time–frequency domain

 The time–frequency domain features computed in this work mainly include PSD and energy 
features. Since the EEG signal itself is a time series, it is necessary to map the EEG signal to a 
specific frequency range before we extract its frequency domain features or time–frequency 
domain features. In general, the FT or wavelet transform (WT) is used to divide the effective 

Fig. 1. (Color online) Framework of the model for mixed feature extraction and emotion recognition classification.
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frequency range of EEG signals evenly, and then the required features in each frequency band 
are calculated. By fully considering the classification and characteristics of EEG signals, we 
extract the important frequency bands of EEG signals by wavelet packet transform. Then, in 
accordance with the classification theory of EEG signals, the relevant features are calculated in 
each frequency band. Specific elaborations are as follows.

3.2.1 Frequency band extraction based on wavelet packet transform

 To reduce the computational complexity and computational time, we first down-sample the 
raw data and then extract features from SEED. Five important frequency bands of EEGs (δ, θ, α, 
β, and γ bands), of EEGs will be studied in the experiment. To make the frequency resolution 
close to the frequency range of EEG bands, the original EEG signal is decomposed into seven 
layers on the basis of a DB4 wavelet. The seventh layer contains a total of 27 = 128 bands, and 
each band has a frequency range of 128/128 = 1 Hz.
 If a sub-band space is obtained using an even-order high-pass decomposition filter, further 
decomposition of the sub-band space will result in two sub-bands of equal bandwidth and 
frequencies sorted from low to high. Conversely, if a sub-band space is obtained using an odd-
order high-pass decomposition filter, further decomposition of the sub-band space will result in 
two sub-bands of equal bandwidth and frequencies arranged from high to low. The specific 
permutation order is independent of the number of passes through the low-pass decomposition 
filter. In this paper, the Wpfrqord function in Matlab is used to rearrange the coefficients 
corresponding to each node obtained by wavelet packet decomposition, which further verifies 
the accuracy of this rule. The seven-layer wavelet packet decomposition tree structure is 
obtained.
 A red node can be reconstructed using the wavelet packet, which indicates that a δ band can 
be obtained as well as a green node, a yellow node, a blue node, and an orange node 
corresponding to the θ, α, β, and γ bands, respectively. Table 1 further shows the numbers of 
nodes of the wavelet packet tree and the corresponding bandwidth ranges in these five bands.
 Furthermore, according to the above information, the nodes of the wavelet packet tree 
contained in each frequency band are reconstructed using the wavelet packet. Five important 
bands of EEG signals can be extracted. For the data of the sixth channel of EEG signals collected 
by a subject in a certain evoking experiment in the SEED as an example,(18) the original signal 
graph and the signal graph of each frequency band extracted are shown in Fig. 2.

Table 1
Each band contains nodes and a frequency range.
EEG signal frequency band Standard bandwidth range Included nodes and frequency band range
δ band 0–3 Hz [6,0](0–2 Hz); [7,3](2–3 Hz);
θ band 4–7 Hz [6,3](4–6 Hz); [7,5](6–7 Hz);
α band 8–13 Hz [5,3](8–12 Hz); [7,10](12–13 Hz);

β band 14–30 Hz [6,4](14–16 Hz); [4,3](16–24 Hz);
[5,5](24–28 Hz); [6,9](28–30 Hz);

γ band 30–80 Hz [6,8](30–32 Hz); [2,1](32–64 Hz); [3,6](64–80 Hz)
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3.2.2 PSD feature extraction

 PSD is an effective index of the frequency characteristics of the time series. It can effectively 
characterize the distribution of power generated by random vibration using its frequency. 
Essentially, it describes the vibration originally existing in the time dimension from the aspect of 
frequency dimension.(19) Suppose that the autocorrelation function of the random signal x(t) is 
defined as 

 ( ) ( ) ( )tr k E x t x t k = +  , (1)

where E represents mathematical expectations and ( )x t k+  represents the conjugate function of  
x(t + k). When the autocorrelation function matches the condition of absolute integrability, its FT 
and corresponding inverse transform are respectively shown as follows.

 ( ) ( ) ( ) jwk
t t tS w F r k r k e dk

+∞ −

−∞
= =   ∫  (2)

Fig. 2. (Color online) Channel 6 original signal and waveform of each frequency band of a sample.
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When k = 0, the autocorrelation function rt(k) represents the power of the signal and its FT 
function st(w) represents the power of the signal at the unit frequency, also known as PSD.
 Here, we take the experimental data of a subject as an example. The histogram of the mean 
PSD of each band of the EEG signal in different emotional states is shown in Fig. 3.
 Figure 3 shows that the average PSD of each frequency band varies significantly in different 
emotional states. Therefore, PSD can be used as one of the features in emotion recognition.

3.2.3 Frequency band energy feature extraction

 As the EEG signal intensity varies in different emotional states, different emotional states of 
the brain can be distinguished by calculating the energy of each frequency band.(6) The 
experimental results illustrate that the EEG signal strength can be effectively expressed by the 
vibration amplitude of the EEG signal. The specific definition is 

 ( ) 2

,
i

j i jE d k =  ∑ , (4)

where di
j(k) represents the amplitude of the first node at the level of the wavelet packet 

decomposition tree. According to this definition, the energy of each frequency band can be 
calculated separately by obtaining each frequency band by wavelet packet transform. On this 
basis, the energy entropy of the wavelet packet can be calculated using Eq. (5). It shows that the 

Fig. 3. (Color online) Mean PSDs of frequency bands under different emotional conditions.
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higher the entropy and the more uniform the energy distribution in the corresponding frequency 
range, the stronger the randomness of its distribution.
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 represents the energy ratio of each frequency band, which can be used to describe 

the energy distribution between various emotional states in different frequency bands. The 
energy distribution of the channel 6 signal for the same subject under three different emotional 
states is shown in Fig. 4.
 From Fig. 4, we can see that the energy distribution of each frequency band varies 
significantly in different emotional states. Particularly in the positive emotional state, the energy 
ratio of the δ frequency band is much higher than those of the other frequency bands, being 80% 
of the energy of the band. In addition to the energy ratio of each frequency band, the energy 
entropy of each frequency band is calculated and taken as the energy feature of the EEG signal.

3.3 Feature extraction of chaotic eigenvector

 Besides the time-frequency feature, according to the randomness, nonlinearity, and 
nonstationarity of the EEG signal, we establish the chaotic feature vector from the EEG signal 
by introducing chaos theory into the EEG signal feature extraction to calculate the representative 
correlation dimension (CD) and the maximum Lyapunov exponent.

Fig. 4. (Color online) Energy distributions of frequency bands under different emotional conditions.
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3.3.1 Correlation dimension

 The CD is a widespread index in the nonlinear analysis of the chaotic time series. It can 
quantitatively describe the complexity of the internal structure of the chaotic system.(20) Firstly, 
the correlation integral function C(r) and D2 of the CD are defined as

 ( ) ( ) ( )
1 1

2 , 0
1

N N

ij
i j i

C r r d r
N N

θ
= = +

= − >
− ∑ ∑ , (6)

 ( )
2 0

ln
lim , 0

lnr

C r
D r

r→
= > , (7)

where dij = ||Xi − Xj|| denotes the distance between two points in phase space, ( ) {0, 0
1, 0

x
xxθ <
≥= . 

 The CDs of the four selected channels in all samples are calculated by the above steps, and 
the range and mean of the CD of each channel in different emotional states are calculated and 
shown in Table 2.
 From Table 2, it is clear that the CD of the EEG signal is not an integer, indicating that the 
EEG signal is indeed a nonlinear signal with chaotic characteristics. At the same time, it is 
ascertained that the CD values obtained are slightly different in the numerical distribution, 
although they overlap to some extent in different emotional states. Therefore, although the CD is 
not used as the main factor for emotion recognition, it contributes to improving the rate of 
emotion recognition.

3.3.2 Maximum Lyapunov exponents

 The initial value of the chaotic system markedly affects the state of the chaotic system at each 
moment. For example, the separation speed between movement orbits of two original values, 
initially close pairs, in a chaotic system can exponentially grow with time. This phenomenon can 
be quantitatively described by the Lyapunov exponent.(21)

 The Lyapunov exponent can represent the exponent of the rate of velocity change of a moving 
system in its phase space when the adjacent trajectories are close to or far from each other. We 
here calculate the maximum Lyapunov exponent of the four channels selected by all samples as 
well as the range and mean of the maximum Lyapunov exponent of each channel in different 

Table 2
Ranges and means of corresponding relevance dimensions of EEG channels under different emotional conditions.
Channel Positive emotions (scope/mean) Neutral emotions (range/mean) Negative emotions (range/mean)
4/AF3 1.0962–1.7632/1.4981 1.2983–1.9823/1.6663 0.5242–1.6987/1.2663
6/F7 1.2916–1.6337/1.4515 0.9523–1.8473/1.5898 0.5542–1.6271/1.2885
9/F1 0.9283–1.8627/1.5681 0.8951–1.7193/1.6309 0.6582–1.1983/0.9809
12/F4 0.8175–1.7463/1.3892 1.0738–2.2324/1.7035 0.9567–1.4892/1.3023
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emotional states, as shown in Table 3. Similarly to the CD, the maximum Lyapunov exponent is 
also an important input in the classification of emotions.

3.4 Mixed feature selection

 From each channel in each sample, we extract a total of 5 × 3 = 15 time–frequency domain 
features, including PSD mean, energy ratio, and energy entropy, which are calculated from the 
five frequency bands of EEG signals. We extract two chaotic features, namely, the CD and 
maximum Lyapunov exponent. By fusing time–frequency domain features with chaotic features, 
each channel contains 17 features. For each sample, there are 17 × 4 = 68 features. To remove the 
redundant information in these features and simplify the operation process, the principal 
component analysis method is used to select the fused features to realize feature dimensionality 
reduction.

3.5	 Classification	model	training	and	parameter	optimization

3.5.1	 SVM	classification	model	training

 The data needed to classify emotion in this study is linear and inseparable. The least squares 
SVM based on the Gauss kernel function is utilized as the classification model for emotion 
recognition. All the parameters that must be determined in the training process include the 
penalty factor c and parameter α of the Gauss kernel function. These two parameters determine 
the performance of the SVM classification model. Thus, they are very important for the training 
of the classification model. 

3.5.2	 Decision	model	optimization

 As a typical binary classification algorithm, SVM cannot deal with multiclass classification 
directly. In this work, we intend to identify three categories of emotions. Since this task involves 
fewer categories, we use a one-to-one method to classify the three categories of emotions and 
train a binary classifier between any two categories. We then use voting to decide which 
category the sample belongs to. However, for the three classifiers trained in this study, it is 
possible to get one vote for each of the three emotions by voting alone, which may result in 
assigning multiple labels to a single observation.

Table 3
Range and mean of maximum Lyapunov exponent for EEG channels under different emotional conditions.
Channel Positive emotions (scope/mean) Neutral emotions (range/mean) Negative emotions (range/mean)
4/AF3 0.0105–0.1174/0.0491 0.0633–0.1823/0.0931 0.0084–0.1691/0.0463
6/F7 0.0254–0.137/0.0527 0.0553–0.3133/0.0872 0.0253–0.1721/0.0586
9/F1 0.0098–0.127/0.0511 0.0951–0.2713/0.1039 0.0562–0.1283/0.0619
12/F4 0.0175–0.1433/0.0481 0.0438–0.2923/0.0715 0.0167–0.1482/0.0376
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 When there are an equal number of votes, the traditional processing method is to judge the 
samples as a category with smaller labels. Obviously, this processing method is not practical. To 
improve it, some researchers proposed to introduce a distance-related fuzzy discriminant 
function on the basis of the one-to-one SVM algorithm to determine the specific class in 
accordance with the reliability of voting.(22) Its essence is to calculate the distance between the 
sample and its separating hyperplane. Which category the sample belongs to depends on the 
classification result of the classifier nearest to the separating hyperplane. However, this method 
is sometimes unreliable because it only uses a small number of support vectors as the 
representative of the class to discriminate the samples without taking into account the overall 
distribution of the samples. If the distance between the sample and the hyperplane is taken as the 
basis of classification, sample A may be classified as a positive emotion. In fact, from the 
distribution of samples, sample A should be classified as a negative emotion.
 In fact, samples belonging to the same category are apt to aggregate into a group in the 
spatial distribution. We propose a decision-making method that combines the distance between 
the sample and the class center, and the distance between the sample and the separating 
hyperplane in order to classify samples that may exist in nonclassifiable regions more accurately 
by means of a one-to-one algorithm.
 Firstly, the average feature of all samples belonging to the ith category is taken as the class 
sample center oi of this category, where oi is denoted as 

 
1

1 in

i k
ki

o x
n =

= ∑ , (8)

where ni represents the total number of samples in the ith category. Then, the reliability 
discriminant function proposed in this paper is expressed as 

 ( ) ( )
( )

( )
( )

,
1 1

max , max
j i i j

i j
j i i ji i

d x o d x
s x

d x o d x

   
   = − • −
   
   

, (9)

where d(xj, oi) represents the distance between sample xi and the center oi of the ith category, and 
di(xj) represents the distance between the sample xi and the separating hyperplane that 
determines the sample as the ith category. The decision process of one-to-one SVM based on the 
reliability discriminant function is shown in Fig. 5.

4. Experiment 

 To verify the effectiveness of the proposed method, three sets of experiments were conducted: 
feature selection and dimensionality reduction, decision model optimization, and different 
feature classification, as described in Sects. 4.2, 4.3, and 4.4, respectively.
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4.1 SEED database

 We use SEED from Shanghai Jiaotong University. It is an open database resource established 
by the Brain Computing and Machine Intelligence Center of the Computer Science and 
Engineering Department of Shanghai Jiaotong University of China in 2015 and can be used by 
researchers for emotion recognition research. The information summary of SEED is shown in 
Table 4.
 There are 62 electrodes in the EEG signal acquisition device. The distribution of electrodes is 
shown in Fig. 6. The sampling rate is set to 1000 Hz during the acquisition of EEG signals. An 
eye-tracking device is used to record the eye electric signal, which is used to eliminate eye 
movement artifacts during data preprocessing.
 SEED contains 15 × 15 × 3 = 675 EEG signal samples. The EEG signals collected in each 
evoking experiment consist of 62 channels. On the basis of the research conclusions of the 
database provider, the data of channels 4, 6, 9, and 12 (corresponding electrodes AF3, F7, F1, and 
F4, respectively) are selected in this study. Therefore, each sample used in this study includes 
four channels. On the premise of guaranteeing the validity of experimental data, the 
dimensionality of data is reduced significantly to improve the speed of subsequent data 
processing.

4.2	 Feature	selection	and	dimensionality	reduction	effect

 In accordance with the method of feature selection described in Sect. 3.2, we set four 
thresholds of 3, 2, 1, and 0% for the dimensions of the feature subset, respectively. With the 

Fig. 5. (Color online) Decision flow of single sample.
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above thresholds, four feature subsets with dimensions of 18, 35, 52, and 68 are achieved. Then, 
we use LS-SVM to investigate the effect of feature selection. Table 5 and Fig. 7 show the 
accuracies of different dimension feature subsets for emotion recognition.
 From Table 5 and Fig. 7, we can see that the overall trend of classification accuracy decreases 
with the decrease in feature dimension after feature selection and dimensionality reduction by 
principal component analysis. In particular, when the dimension of the feature subset is reduced 
from 68 to 18, the average accuracy of emotion classification decreases from 83.99 to 64.68%. 
However, reducing the dimensionality of features in a certain range will not decrease the 
accuracy of category discrimination. On the contrary, reducing the feature dimension improves 
the accuracy of classification for certain categories of emotions. As the dimension of the feature 
subset is reduced from 68 to 52, although the classification accuracy of positive and neutral 
emotions slightly decreases, the classification accuracy of negative emotion increases. On the 
whole, the average classification accuracy is slightly improved. It is shown that some redundant 
features exist in the 68-feature sets. Appropriate dimensionality reduction contributes not only 
to simplifying the operation and speeding up the classification, but also to improving the 
accuracy of classification in some cases. 

Table 4
Information summary of SEED.
Type of information Information quantification
Number of movie clips 15
Length of movie clips 4 min (emotional highlights)
Emotional labels Positive, negative, and neutral
Number of subjects 15 (seven males and eight females)
Number of experiments 45 (each subject was subjected to three experiments)
Number of trials per movie clip 2–4 people

Recorded data EEG data and video recording of facial expressions of 
subjects

Source: According to the content of SEED in 2015

Fig. 6. (Color online) Electrode distribution of EEG signal acquisition device.
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4.3	 Effect	of	optimizing	the	decision	model

 To tackle the three classification problems in this paper, we use the optimal combination of 
features described in Sect. 3.4 to construct the classification model, and we employ a one-to-one 
solution to train three classifiers for the three different emotions. In the decision-making stage, 
three classifiers are used to vote, and the winning category is selected as the category of samples. 
To test samples existing in the nonclassifiable region, the fuzzy and reliability discriminant 
functions proposed in this paper are used as the core functions of classifiers. The classification 
accuracies of two different discriminant functions are shown in Table 6 and Fig. 8.
 From the results in Table 6 and Fig. 8, it is concluded that the classification accuracy of 
samples in the nonclassifiable regions is lower than that of total samples, which indicates that 
improving the recognition accuracy of samples in nonclassifiable regions is an effective means 
of improving the overall recognition accuracy. The fuzzy discriminant function only takes the 
distance between the sample in the nonclassifiable region and the separating hyperplane of each 
classifier as its criterion of the classification decision. This criterion is problematic. The 
discriminant function proposed in this paper not only considers the distance between the 
samples in the nonclassifiable region and the separating hyperplanes of the classifiers, but also 
takes the distribution of the samples into account. Experiments show that it can effectively 
improve the classification accuracy of the samples in the nonclassifiable region. 

Fig. 7. (Color online) Histogram of classification accuracies of feature subsets of different dimensions.

Table 5
Classification accuracies  of feature subsets from different dimensions.

Feature weight threshold (dimension of feature subset)
3% (18) 2% (35) 1% (52) 0% (68)

Positive emotions 69.17% 78.28% 86.06% 86.33%
Negative emotions 70.23% 80.45% 86.47% 85.23%
Neutral emotion 54.65% 66.76% 80.93% 81.41%
Mean value 64.68% 75.16% 84.49% 84.32%
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4.4	 Effect	of	different	feature	classifications

 The majority of the emotion classification research based on EEG focuses on extracting and 
selecting the features of EEG in the time, frequency, and time–frequency domains. By fully 
considering the randomness, nonstationarity, and nonlinearity of EEG itself, we introduce chaos 
theory to extract EEG features and obtain chaotic characteristic parameters including the CD 
and maximum Lyapunov exponent. To compare the classification results of different features, 
the process described in Sect. 2 is used to train the classification model for different feature sets. 
In the decision-making stage, the reliability discriminant function proposed in this paper is 
adopted to classify the samples existing in one-to-one multiclass classification and 
nonclassifiable regions. The experimental results such as those in Table 7 and Fig. 9 are obtained 
for comparing and discussing the specific effects of emotion recognition on the following 
different types of features. 
 The time–frequency domain features with 60 dimensions include the mean PSD, energy 
ratio, and energy entropy of each band of EEG signals with 60 dimensions. The chaotic features 
with eight dimensions include the CD and maximum Lyapunov exponent. The mixed features 
include time–frequency domain and chaotic features. In this study, after the feature selection 
phase, we combine the two sets of features into the mixed feature set with 52 dimensions.

Fig. 8. (Color online) Histogram of classification accuracies of different discriminant functions.

Table 6
Classification accuracies of different discriminant functions.

Fuzzy discriminant function Reliability discriminant function
Unclassified region Total Unclassified region Total

Positive emotions 83.22% 86.33% 83.73% 88.17%
Negative emotions 84.31% 85.23% 85.02% 87.84%
Neutral emotion 84.74% 81.41% 84.61% 85.51%
Mean value 84.09% 84.32% 84.45% 87.17%
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 From the results in Table 7 and Fig. 9, it can be seen that the classification accuracy of chaotic 
features can be higher than that of time–frequency features in terms of the classification of 
positive and negative emotions. However, when distinguishing neutral emotions, the 
performance of time–frequency features is slightly better than that of chaotic features. Moreover, 
the experimental results obtained using the combination of time–frequency domain and chaotic 
features indicate better classification results than when using only a single type of feature.
 According to the results of the experiments, the best recognition of the three types of 
emotions based on SEED achieved an accuracy of 87.17%, while the highest recognition 
accuracies of positive and negative emotions were 88.17 and 87.84%, respectively.
 The founder of SEED initially extracted the differential entropy of the EEG signal as a 
feature and trained and validated it using the logistic regression, K-nearest neighbor, SVM, and 
deep belief network. The average accuracies were 82.70, 72.60, 83.99, and 86.08% in the baseline 
paper,(23) respectively. Overall, the results proved that the novel feature set extracted and 
optimized the classification model results and achieved a higher prediction accuracy.

5. Conclusions 

 We developed a novel set of features from EEG signals for emotion classification. The chaos 
theory was introduced to calculate chaotic-parameter-like features with the aim of creating a 

Fig. 9. (Color online) Histogram of classification accuracies of different types of features.

Table 7
Classification accuracies of different types of features.
Type name Time–frequency domain features Chaotic features Mixed features
Positive emotions 81.46% 83.69% 88.17%
Negative emotions 82.73% 85.83% 87.84%
Neutral emotion 80.67% 79.31% 85.51%
Mean value 81.62% 82.94% 87.17%
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mixed feature set. We extracted the five key frequency bands in EEG signals by wavelet packet 
transform and also separated them into several frequency bands instead of simply dividing them 
into several frequency bands by FT and WT. Finally, we proposed a new reliability discriminant 
function to solve the problem of fuzzy classification and optimized the decision-making model 
by considering the distribution of samples and the distance between samples and separating 
hyperplanes. From the two aspects of data processing and the classification model, we proposed 
innovative measures. The experimental results proved the superiority of our method. We will 
actively explore the improvement of deep learning methods and their application to our 
experimental data in the future.
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