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 Spheroidization is a process that uses a high temperature to change the properties of metals 
and it is often used in physical metallurgy. Metallographic inspection is an important method of 
inspecting the quality of metal materials after spheroidization. In the process of metallographic 
inspection, a high-power optical microscope combined with a digital camera is usually used to 
obtain an image of the spheroidized metal. A light sensor, which is a charge-coupled device in 
the camera, is used to convert the image observed by the microscope into an electronic image 
signal. In this paper, we present an image recognition method with a deep learning neural 
network (NN) to inspect the metallographic grade of spheroidized metal. Three different 
transfer learning models are incorporated in the NN structure for feature extraction for 
comparison. The overall aim of our study is to reduce the shortcomings and inconvenience of 
traditional manual inspection and increase the judgment accuracy of metallographic analysis. In 
experiments, 203 metallographic images of size 1536 × 2048 were used for the learning and 
testing of the NN. The metallographic grade of the spheroidized metal was evaluated using the 
deep learning NN model. 

1. Introduction

 Spheroidizing annealing is a well-known heating method for aggregating cementite steel into 
spheroids and uniformly distributing them in a ferrite matrix. Such an annealing process can 
improve the ductility of steel and reduce its hardness, so that the steel can be easily machined or 
deformed. The effects of holding time during both austenization and spheroidization on the 
microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV 
were experimentally studied by Yu et al.(1) Di et al. proposed a spheroidization procedure for 
eutectic carbide in a twin-roll-cast M2 high-speed steel strip that involved annealing, quenching, 
and tempering.(2) Studies on the changes in the mechanical properties of steel after 
spheroidization have also been presented.(3–12)

 The spheroidization inspection methods used in industry can basically be divided into two 
types. In the first type, quantitative analysis is used to calculate the spheroidization rate, and in 
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the second type, a metallographic diagram is compared with the standard diagram for judgment. 
However, both methods mainly involve manual tests. Such manual tests can only be carried out 
by sampling testing, and comprehensive testing cannot be achieved. Therefore, the true accuracy 
of testing is unclear. Here, we take a metal wire of 12 mm diameter as an example. For this wire, 
the total inspection area is about 113 mm2. The area of the metal viewed under a microscope 
with a magnification of 500 times is about 12000 μm2. In other words, it is necessary to inspect 
about 9400 pieces of this metal wire. Such manual inspection would be time-consuming and 
laborious, and only partial inspection, i.e., sampling inspection, can be carried out. Thus, the 
grade of the spheroidized metal obtained from metallographic analysis is only a verification 
result obtained from partial sampling rather than a comprehensive result. Because the result of 
the overall metallographic inspection cannot be accurately known in the case of sampling, 
deviations may be easily overlooked, affecting the quality of subsequent product production.
 In this study, we propose an artificial intelligence (AI) image processing method to inspect 
the grade of spheroidized metal. A neural network (NN) model with deep learning is established 
to replace the process of manual judgment, so that the grade of spheroidized metal can be 
quickly determined over a large area. The proposed method and experimental results will be 
reported in the following sections.

2. Literature Review

 In recent years, the use of AI image recognition in metallographic inspection has been 
explored, and related studies have also been published. Azimi et al. proposed a deep learning 
method for microstructural classification of low-carbon steel. A fully convolutional neural 
network accompanied by a max-voting scheme was implemented in their classification.(13) They 
concluded that the proposed system can achieve high classification accuracy, drastically 
outperforming the state-of-the-art method. Wu et al. proposed a novel convolutional neural 
network architecture based on a modified residual neural network (ResNet) for metallographic 
analysis.(14) They found that the multi-scale ResNet and the modified method can improve the 
detection accuracy. Xu et al. used the deep learning method in research on material recognition 
and the classification of metallographic images. Their two classification algorithms based on a 
convolution neural network and hierarchical transfer learning achieved good results for material 
recognition and the grading of metallographic images, respectively.(15) Other studies using NN 
technology in metallographic analysis have also been reported.(16–18)

3. Research Methods

3.1 Deep learning NN modules

 In this study, three transfer learning methods are used for feature extraction, namely, VGG16, 
VGG19, and Xception. After the feature extraction of the migration model, each image is passed 
through a convolutional layer with 16 3 × 3 filters and one sub-sampling step. A fully connected 
layer (dense layer) with 1024 nodes is connected to the classifier as the final output layer. The 
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number of nodes in the output layer is based on the number of  categories that need to be 
classified. The basic structure of the deep learning NN model in this study is shown in Fig. 1. 
The operating processes of the VGG16, VGG19, and Xception modules are presented in 
Figs. 2–4, respectively.

Fig. 1. (Color online) Basic structure of deep learning NN module.

Fig. 2. Operating process of VGG16 module. Fig. 3. Operating process of VGG19 module.
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3.2 Measurement

 Accuracy is often used as an indicator of measurement in many experiments. It is the simplest 
and most common measurement indicator. However, the accuracy may be distorted when the 
distribution of category labels is unbalanced. For instance, suppose there are four grades of 
spheroidized metal to be classified, and the number of each grade is Grade 1: 10, Grade 2: 80, 
Grade 3: 5, Grade 4: 5. If the classification model predicts all of them as Grade 2, then an 
accuracy of 80% can be easily achieved, and it is difficult to know whether the classification 
model is good or not. To avoid such ambiguity in evaluating measurement accuracy, 
measurements of precision and recall rates are also considered in this study.
 For a two-class prediction problem, the outcomes are usually labeled either as positive (P) or 
negative (N). Therefore, four possible outcomes can be generated from a binary classifier. If the 
outcome from a prediction is P and the actual value is also P, then it is called a true positive (TP); 
however, if the actual value is N, then it is said to be a false positive (FP). Conversely, a true 
negative (TN) occurs when both the prediction outcome and the actual value are N, and a false 
negative (FN) occurs when the prediction outcome is N while the actual value is P.

Fig. 4. Operating process of Xception module.
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Here, accuracy, precision, and recall are defined as follows.
Accuracy:

 
TP TN

TP FN FP TN
+

+ + +
 (1)

Precision:

 
TP

TP FP+
 (2)

Recall:

 
TP

TP FN+
 (3)

 From Eqs. (1) and (2), it can be seen that the higher the FN and FP values, the lower the 
accuracy. To achieve higher accuracy in metallographic prediction, misclassification must 
therefore be avoided. In this case, the value of FP must be relatively small. Similarly, from Eq. 
(3), for a higher recall value, the FN value must also be as small as possible.

4. Experiments

 In this study, 203 images of spheroidized metal of different grades (Grade 1–Grade 4) of size 
1536 × 2048 pixels were collected and experimented on. To objectively compare the performance 
of the three different modules, the 203 data were randomly reorganized into five groups. The 
numbers of training and testing data for each grade are listed in Table 1. Figure 5 shows 
examples of metallographic images showing spheroidized metal of Grade 1 to Grade 4. 
 Table 2 shows the average accuracy rates of the experiment for the three modules.  The 
average accuracy rates of the VGG16-based, VGG19-based, and Xception-based modules can 
reach 84, 84, and 82%, respectively. Tables 3 and 4 respectively list the precision and recall rates 
of the three modules in the verifications. It was found that the VGG19 module has the best 
performance in metallographic analysis.

Table 1
Numbers of images of Grade 1–Grade 4.
Data Grade 1 Grade 2 Grade 3 Grade 4 Total
Training 57 73 15 9 154
Testing 18 24 5 2 49
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Fig. 5. (Color online) Examples of metallographic images of Grades 1 to 4.

Table 2
Accuracy rates obtained by the three modules.

Accuracy
VGG16 VGG19 Xception

Training (%) Validation (%) Training (%) Validation (%) Training (%) Validation (%)
Group 1 92 86 89 92 90 82
Group 2 83 86 94 86 88 78
Group 3 90 76 90 82 95 88
Group 4 86 84 88 86 88 80
Group 5 91 86 71 73 91 80
Average 88 84 86 84 90 82

Table 3
Precision rates obtained by the three modules.

Precision
VGG16 VGG19 Xception

Training (%) Validation (%) Training (%) Validation (%) Training (%) Validation (%)
Grade 1 100 99 91 91 98 95
Grade 2 82 79 86 84 87 79
Grade 3 87 62 80 72 93 70
Grade 4 100 93 100 90 83 63

Table 4
Recall rates obtained by the three modules.

Recall
VGG16 VGG19 Xception

Training (%) Validation (%) Training (%) Validation (%) Training (%) Validation (%)
Grade 1 77 77 89 90 88 78
Grade 2 97 94 85 85 96 91
Grade 3 81 56 77 56 69 40
Grade 4 100 80 98 80 100 100
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5. Conclusions

 The main purpose of this study was to develop an effective technique for metallographic 
analysis, which is an important step in detecting the quality of the steel spheroidization process. 
In the study, different grades of metallographic images were collected, and then three deep 
learning NN modules were used to evaluate the metallographic structure. In the experiments, we 
found that the three NN modules had good evaluation results, and the modules based on VGG16 
and VGG19 had similar performance. The average validation accuracy of the modules reached 
84%. This means that the shortcomings and inconveniences of traditional manual inspection 
methods can be greatly reduced, and the accuracy of metallographic analysis can be increased. 
 The spheroidization process is used to aggregate the cementite of steel into spheroids, which 
should be uniformly distributed in the metal. However, under actual conditions, cementite will 
not be uniformly distributed in the metal. Therefore, the boundaries and differences between 
different metallographic grades make analysis more difficult. In future research, we plan to 
divide a metallographic image (1536 × 2048) into 48 small images with a size of 256 × 256. Each 
small image will first be classified, then all the small images will be used for training and testing 
of the NN. Finally, the metallographic analysis of each original image will be judged on the 
percentage of images satisfying each grade. We believe that this method can further increase the 
accuracy of metallographic analysis.

Acknowledgments

 This research was supported by the Ministry of Science and Technology, Taiwan, under 
contract No. MOST-108-2221-E-214-031.

References

 1 W. T. Yu, J. Li, C. B. Shi, and Q. T. Zhu: J. Mater. Eng. Perform. 26 (2017) 478. https://doi.org/10.1007/s11665-
016-2461-1

 2 H. Di, X. Zhang, and G. Wang: J. Mat. Process. Technol. 166 (2004) 359. https://doi.org/10.1016/j.
jmatprotec.2004.07.085

 3 C. C. Yang and N. H. Lu: Mater. Sci. Appl. 10 (2019) 677. https://doi.org/10.4236/msa.2019.1011048.
 4 T. Das, J. Y. Li, M. Painter, and E. Summerville: J. Mater. Eng. Perform. 11 (2002) 86. https://doi.org/10.1007/

s11665-002-0013-3
 5 X. D. Luo, Y. X. Zhu, and H. Liu: Adv. Mater. Res. 886 (2014) 59. https://doi.org/10.4028/www.scientific.net/

AMR.886.59
 6 Y. L. Tian and R. W. Kraft: Metall. Trans. A 18 (1987) 403. https://doi.org/10.1007/BF02646654
 7 K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, and T. Takahashi: Scr. Mater. 44 (2001) 977. 

https://doi.org/10.1016/S1359-6462(00)00690-4
 8 J. M. O’Brien and W. F. Hosford: Metall. Mater. Trans. A. 33 (2002) 1255. https://doi.org/10.1007/s11661-002-

0226-y
 9 D. H. Shin, S. Y. Han, K. T. Park, Y. S. Kim, and Y. N. Paik: Metall. Trans. 44 (2003) 1630. https://doi.

org/10.2320/matertrans.44.1630
 10 Y. G. Ko, S. Namgung, D. H. Shin, I. H. Son, K. H. Rhee, and D. L. Lee: J. Mater. Sci. 45 (2010) 4866. https://

doi.org/10.1007/s10853-010-4587-0
 11 Y. P. Gul, M. A. Sobolenko, and A. V. Ivchenko: Steel Transl. 42 (2012) 531. https://doi.org/10.3103/

S0967091212060058

https://doi.org/10.1007/s11665-016-2461-1
https://doi.org/10.1007/s11665-016-2461-1
https://doi.org/10.1016/j.jmatprotec.2004.07.085
https://doi.org/10.1016/j.jmatprotec.2004.07.085
https://doi.org/10.4236/msa.2019.1011048
https://doi.org/10.1007/s11665-002-0013-3
https://doi.org/10.1007/s11665-002-0013-3
https://doi.org/10.4028/www.scientific.net/AMR.886.59
https://doi.org/10.4028/www.scientific.net/AMR.886.59
https://doi.org/10.1007/BF02646654
https://doi.org/10.1016/S1359-6462(00)00690-4
https://doi.org/10.1007/s11661-002-0226-y
https://doi.org/10.1007/s11661-002-0226-y
https://doi.org/10.2320/matertrans.44.1630
https://doi.org/10.2320/matertrans.44.1630
https://doi.org/10.1007/s10853-010-4587-0
https://doi.org/10.1007/s10853-010-4587-0
https://doi.org/10.3103/S0967091212060058
https://doi.org/10.3103/S0967091212060058


1210 Sensors and Materials, Vol. 34, No. 3 (2022)

 12 H. S. Joo, S. K. Hwang, H. M. Baek, Y. T. Im, I. H. Son, and C. M. Bae: J. Mat. Process. Technol. 216 (2015) 
348. https://doi.org/10.1016/j.jmatprotec.2014.10.001

 13 S. M. Azimi, D. Britz, M. Engstler, M. Fritz, and F. Mücklich: Sci. Rep. 8 (2018) 2128. https://doi.org/10.1038/
s41598-018-20037-5

 14 W. H. Wu, J. C.  Lee, and Y. M. Wang: Sensors 20 (2020) 1. https://doi.org/10.3390/s20195593  
 15 Z. Y. Xu, J. L. Gu, and R. Zou: Proc. 9th Int. Symp. Precision Mechanical Measurements (2019) 113431R. 

https://doi.org/10.1117/12.2548792
 16 V. H. C. de Albuquerque, A. R. de Alexandria, P. C. Cortez, and J. M. R. S. Tavares: NDT E. Int. 42 (2009) 644. 

https://doi.org/10.1016/j.ndteint.2009.05.002
 17 A. S. F. Britto, R. E. Raj, and M. C. Mabel: J. Manuf. Process. 32 (2018) 8. https://doi.org/10.1016/j.

jmapro.2018.04.015
 18 A. Kesireddy and S. McCaslin: Lect. Notes Electr. Eng. 312 (2015) 425. https://doi.org/10.1007/978-3-319-

06764-3_53 

About the Authors

 Rey-Chue Hwang received his Ph.D. degree in electrical engineering from 
Southern Methodist University, Dallas, TX, in 1993. Currently, he is a full 
professor of the Electrical Engineering Department, I-Shou University, 
Taiwan, R.O.C. Dr. Hwang has published more than 300 papers in various 
journals and conferences in the areas of artificial intelligence systems, signal 
processing, and fuzzy control. He is now a fellow of IET and a senior member 
of IEEE. (rchwang@isu.edu.tw)

 I-Chun Chen graduated from the Department of Electrical Engineering of 
I-Shou University. Currently, he is pursuing his Ph.D. degree in electrical 
engineering. His research interests are in artificial intelligence, fuzzy control, 
and signal processing. (qe660212@gmail.com)

 Huang-Chu Huang received his Ph.D. degree in electrical engineering from 
National Sun Yat-Sen University, Taiwan, in 2001. Currently, he is a professor 
of the Electronic Communication Department, National Kaohsiung University 
of Science and Technology, Kaohsiung City, Taiwan. His research interests are 
in the areas of control, power signal prediction, and neural network 
applications. (h4530@nkust.edu.tw) 

https://doi.org/10.1016/j.jmatprotec.2014.10.001
https://doi.org/10.1038/s41598-018-20037-5
https://doi.org/10.1038/s41598-018-20037-5
https://doi.org/10.3390/s20195593
https://doi.org/10.1117/12.2548792
https://doi.org/10.1016/j.ndteint.2009.05.002
https://doi.org/10.1016/j.jmapro.2018.04.015
https://doi.org/10.1016/j.jmapro.2018.04.015
https://doi.org/10.1007/978-3-319-06764-3_53
https://doi.org/10.1007/978-3-319-06764-3_53
mailto:rchwang@isu.edu.tw
mailto:qe660212@gmail.com
mailto:h4530@nkust.edu.tw

