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 In this study, the GSEH-YOLOv5 (GhostNet and SENet included in Head-YOLOv5) 
algorithm is used to realize real-time object tracking and image sensing and recognition on the 
Jetson Nano embedded platform. The purpose is to instantly detect the appearance contour of 
the chip inside the chip slot. As soon as our system detects the damaged chip, a warning is 
generated, and the correct location of the damaged chip in the chip slot is labeled. After that, the 
operator immediately removes the damaged chip to prevent the next chip from being damaged. 
Finally, we also analyze and compare the performance between the improved GSEH-YOLOv5 
algorithm and the traditional YOLOv5 algorithm to verify that the proposed method has the 
better performance.

1. Introduction

 With the promotion of Industry 4.0, innovative technology has brought significant reforms to 
factories, introducing big data, cloud technology, automation and simulation, and other 
technologies into factories, significantly increasing factory production capacity. However, 
unexpected emergencies occur when the plant runs on a production line due to problems with 
old equipment. For example, in automated chip transportation in a production line, if a chip is 
accidentally crushed, the next batch of chips will also be affected. This will impact productivity 
and yield, so how to minimize such losses is the primary goal of this research. Generally 
speaking, object detection is composed of two modes. Mode 1 (single-stage) combines the two 
procedures of identifying an object’s position and classification for processing. Mode 2 (two-
stage) performs these two procedures separately. Among the past object detection algorithms, 
the accuracy of two-stage algorithms for object detection is better than that of single-stage 
algorithms. Common two-stage algorithms are RCNN,(1) Fast-RCNN,(2) and Faster-RCNN,(3) but 
the most significant disadvantage of two-stage algorithms is the calculation time. When there 
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are a large number of frame-selected targets in an image, the subsequent object classification 
must classify a large number of frame-selected targets, which is time-consuming. In particular, 
many everyday applications often require real-time object detection. Typical applications include 
vehicle tracking, street view analysis, mask-wearing testing, operator clothing testing, and 
product inspection of factory production lines. Object detection has recently become a mature 
technology, but the importance of the single-stage algorithms has increased because of their 
higher speed while maintaining reasonable accuracy of object detection.(4) Therefore, many 
applications require a single-stage algorithm for object detection in real-time. Moreover, current 
single-stage algorithms have benefited from improved hardware and the development of 
technology. Indeed, the accuracy of single-stage algorithms can be indistinguishable and even 
exceed that of two-stage algorithms. In this study, we mainly use a single-stage YOLOv5 
algorithm(5–7) released in 2020, which is expected to achieve a higher speed and higher accuracy 
in image sensing and recognition.

2. Related Work

 According to Ref. 8, the core feature of the original YOLO is to treat an input image as many 
grids with the same width and height and predict the objects in each grid. However, at that time, 
YOLO used two bounding boxes in each grid to predict objects, and a grid had only one class. 
Redmon and Farhadi(9) reported that YOLOv2 had a few newly improved methods to improve 
the speed and accuracy of the model, such as batch normalization and an anchor box.
 Redmon and Farhadi newly added a residual network to YOLOv3, making the network 
structure deeper.(10) Compared with YOLOv2, YOLOv3 had greatly improved accuracy while 
maintaining comparable speed to the previous version.(11) The anchor box skills were retained in 
the later YOLO versions. Moreover, in Ref. 12, the main goal of the authors was to design a fast 
operating system using new functions. The proposed fast operation system was not only to 
reduce the computation load dramatically but also to speedup target detector in the production 
system and optimize parallel computing significally. After that, some of these new functions 
were combined to achieve state-of-the-art results.
 Marco et al.(13) found that although compression algorithms can usually successfully reduce 
the inference time, this is at the cost of reduced accuracy. They proposed a new alternative 
method to execute a deep neural network (DNN) on embedded devices efficiently by 
dynamically determining which DNN to use for a given input by considering the required 
accuracy and inference time. Moreover, Sun et al.(14) proposed a target detection network for 
embedded systems. The M-YOLO (Mobile-YOLO) model presented in their study combined 
residual blocks(11) and depthwise separable convolution(15) of the feature selection layer to reduce 
the computational complexity of the network.
 Howard et al.(16) reported that MobileNet mainly uses depthwise separable convolution(15) to 
construct a lightweight(17) DNN. By performing a traditional convolution operation to generate 
similar feature maps with lower computational costs, Han et al.(18) demonstrated that not all 
feature maps need be generated.
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 The dominant sequence transduction model is based on complex recursive or convolutional 
neural networks, including encoders and decoders.(19) The model with the best performance also 
connects the encoder and decoder through the attention mechanism. Moreover, the innovative 
feature of the SENet network is to pay attention to the relationship between feature vectors, so 
that the model can actively learn the importance of features between different feature vectors.(20)

3. Method

 In the following steps, we will use Anaconda3 to build an executable environment for 
YOLOv5 in Windows 10 and collect the data used. The traditional model of YOLOv5 is 
modified to make it more suitable for real-time object detection of a Jetson Nano embedded 
platform, which is a GPU-driven platform designed by NVIDIA with an executable environment. 
Then, the improved model deploys Jetson Nano. Finally, we perform a test on Jetson Nano to 
compare the performance of the traditional version of YOLOv5 with our improved version.

3.1 Architecture for on-site detection of chip contour

 Figure 1 shows the architecture of the YOLOv5 on-site chip detection system.(21,22) The 
YOLOv5 model is trained with supervised learning. It is necessary to collect data and manually 
label the collected data as the input of the training model. We have also improved the traditional 
YOLOv5 model to make it more prominent on the Jetson Nano embedded platform. Finally, we 
also made a warning system with chip detection as the main novelty of this study, which can 
immediately provide helpful location information for users to view.

Fig. 1. (Color online) Architecture of YOLOv5 chip detection system.
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3.2 Data preparation and labelling

 A total of 553 training data and 89 verification data in the data set(23) provided by Taiwan 
NXP Semiconductors Co., Ltd., are labeled through LabelImg, as shown in Part A of Fig. 1. 
Firstly, the recorded video is outputted as a piece of an image with part of the video in each 
frame. Then the part of the image with the detection target is labeled manually. Each image has 
eight targets, which are labeled with their respective conditions, empty, occupied, or defective, 
as shown in Fig. 2.

3.3 Model building and package installation

 Anaconda3 has commonly used packages with the primary executable environment of 
YOLOv5 pre-installed, and thus users do not have to install them again in Windows 10. 
However, YOLOv5 operates under the PyTorch framework, so it is still necessary to install other 
PyTorch-related packages required by YOLOv5 on Anaconda3, as shown in Fig. 3.

Fig. 2. (Color online) Image labeling with LabelImg.

Fig. 3. (Color online) PyTorch tool kit installed in a workstation.
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3.4 Model training and performance evaluation

 In this study, we use PyTorch as the training framework and use the collected and labeled 
data as the training data set to train a model suitable for the data. A screenshot of the actual 
training process record is shown in Fig. 4. After the model is trained, the self-trained model is 
evaluated. If the accuracy rating does not reach the expected level, it is necessary to adjust the 
parameters or check whether the data set is labeled incorrectly or not carefully labeled. After 
completing the adjustment, training is performed again to confirm that the accuracy rating 
reaches the expected level. The mean average precision (mAP) is commonly used to judge the 
quality of a model. The closer mAP is to 1, the better the performance of the model, as shown in 
Fig. 5.

Fig. 4. Screenshot of the actual training process record.

Fig. 5. (Color online) Line chart of mAP with traditional YOLOv5.
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3.5 On-site image sensing and recognition

 We use the best model in the Jetson Nano platform.(24) This is the smallest embedded platform 
in the NVIDIA Jetson series and is shown in Fig. 6. The detection results are output after the 
Jetson Nano platform is used for image sensing and recognition. In fact, the result of the on-site 
image sensing and recognition is acceptable according to the model performance as shown in 
Fig. 7.

Fig. 6. (Color online) Jetson Nano embedded platform.

Fig. 7. (Color online) Chip detection showing results for (a) defective condition, (b) empty condition, and (c) 
occupied condition.

(a) (b)

(c)
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3.6 On-site detection of chip contour

 The data analyzed include the classification of the object, the classification accuracy, and the 
chip’s exact location, as shown in Fig. 8. This is because under the preset conditions, when a 
damaged chip appears, the machine must stop operation immediately to avoid further damage. 
Therefore, as long as the chip detection system detects a damaged chip, it will automatically 
immediately send a message to the user informing them that a chip inside the chip slot on the 
machine is damaged, as shown in Fig. 9. The Notepad text editor contains detailed information 
of the chip, and its actual location is shown by the position of the red box.

3.7	 Modification	of	the	YOLOv5	network	architecture	

 The YOLOv5 network architecture is modified to reduce the number of calculations required 
for feature extraction and the number of parameters used to generate valuable features. The main 
modules used include the Ghost bottleneck block of GhostNet(18) and the SE module of SENet(20) 
to replace the traditional CSP module, as shown in Fig. 10.

3.8	 Average	accuracy	of	GSE-YOLOv5	model

 The identification performance of the improved GSE-YOLOv5 model is evaluated, and the 
overall average accuracy obtained by training with the improved model is shown in Fig. 11.

3.9	 Average	accuracy	of	GSEH-YOLOv5	model

 Next, the identification performance of the improved GSEH-YOLOv5 model is evaluated, 
and the overall average accuracy obtained by training with the improved model is shown in 
Fig. 12.

Fig. 8. Spatial location and accuracy of detected 
objects. (a) Defective case. (b) Empty case. (c) 
Occupied case.

Fig. 9. (Color online) Display information about the 
exact location.

(a)

(b)

(c)
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Fig. 10. Architectures of three YOLOv5-related models. (a) Traditional YOLOv5 model, (b) GSE-YOLOv5 model, 
and (c) GSEH-YOLOv5 model.

(a) (b) (c)
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4. Experimental Results and Discussion

4.1 Estimation of training time and video inference time

 We train the same training data set for the three YOLOv5-related models on a workstation. 
The object detection performances of the three YOLOv5-related models are tested using Jetson 
Nano with 1805 frames of test video, and the inference time needed for each image frame is 
calculated. Equation (1) is used to calculate the average inference time AITijk of the three 
YOLOv5-related models for each image frame, where VITijk represents the total test video’s 
inference time and FN is the total number of test video frames.

 ,where 1, 2, ..., , 1, 2, ..., , 1, 2, ...,  ijk
ijk

VIT
AIT i l j m k n

FN
= = = =  (1)

Fig. 11. (Color online) Line chart of mAP of GSE-YOLOv5.

Fig. 12. (Color online) Line chart of mAP of GSEH-YOLOv5
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The input image size is set to 416 × 416, the batch size is set to 64, and the number of iterations is 
set to 2000. The first row in Table 1 gives the training times of the three YOLOv5-related 
models based on the same parameters, the second column gives the time needed to infer 1805 
frames in the same test image, and the third column gives the average inference time for each 
frame. Figure 13 shows the inference time for each frame of the test image.

4.2 Real-time detection speed and recognition accuracy

 The performance of real-time object detection depends on the number of recognizable frames 
per second and the recognition accuracy. Equation (2) is used to calculate the number of frames 
per second with which three YOLOv5-related models can detect objects in real time, where 

Fig. 13. (Color online) Average inference time for each frame for (a) traditional YOLOv5 model, (b) GSE-YOLOv5 
model, and (c) GSEH-YOLOv5 model.

Table 1
Training and inference times (unit: s).
Method YOLOv5 GSE-YOLOv5 GSEH-YOLOv5
Training 27784.8 27576 27475.2
Inference 540.701 490.012 410.458
Average 0.17591 0.13429 0.09010

(a) (b)

(c)
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RAITijk is the time required for each image in the real-time image source from the camera with 
480 × 640 resolution . Equation (3) is used to calculate the accuracy of the three YOLOv5-related 
models, where cijk represents the identified categories and APcijk represents the accuracy of each 
class. 

 1 ,where 1, 2, ..., , 1, 2, ..., , 1, 2, ...,ijk
ijk

FPS i l j m k n
RAIT

= = = =  (2)

 ,where 1, 2, ..., , 1, 2, ..., , 1, 2, ...,ijk
ijk

ijk

APc
mAP i l j m k n

c
= = = =  (3)

Equation (2) is used to calculate the speed in the real-time object detection with the Jetson Nano 
embedded platform. After that, Eq. (3) is used to calculate the average accuracy of the three 
YOLOv5-related models after training with the same parameters, as shown in Table 2.

4.3 Operational cost

 The number of parameters used and the number of calculations considerably vary among the 
three YOLOv5-related models, as shown in Table 3.

4.4 Performance indicator

 We mainly focus on maintaining high accuracy and improving the frame rate when 
implemented on the embedded platform, with the frame rate obtained from the traditional 
YOLOv5 model used as the baseline. Equation (4) is used to calculate the frame rate difference 
between the three YOLOv5-related models for the Jetson Nano embedded platform. Here, FPSijk 
is calculated using Eq. (2), and Oi is the frame rate measured for the traditional YOLOv5 model. 

 ,where 1, 2, ..., , 1, 2, ..., , 1, 2, ...,ijk
ijk

i

FPS
PI i l j m k n

O
= = = =  (4)

Table 2
Speed and accuracy of models.
Method YOLOv5 GSE-YOLOv5 GSEH-YOLOv5
Speed (fps) 5.74713 6.09756 8.77193
Accuracy (%) 98.5 97.4 97.5

Table 3
Numbers of parameters and flops of models.
Method YOLOv5 GSE-YOLOv5 GSEH-YOLOv5
Parameters (#) 7251912 5310840 4182136
Flops (Gflops) 16.8 10.8 6.9
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For the traditional YOLOv5 model, the performance indicator is calculated to be 1 using Eq. (4), 
and the performance indicators of the GSE-YOLOv5 and GSEH-YOLOv5 models are analyzed, 
as shown in Table 4.

4.5 Discussion

 The experimental results show that the size of a single data file required for the traditional 
YOLOv5 model is 14.4 MB, and real-time object detection can be carried out on the embedded 
platform at a frame rate of 5.74713 fps with an accuracy of 98.5%. The size of a single data file 
required for the GSE-YOLOv5 model is 10.6 MB, which is 26.1% less than that of the traditional 
YOLOv5 model, and it can perform real-time object detection at a frame rate of 6.09756 fps on 
the embedded platform, which is 6.1% higher than that of the traditional YOLOv5 model. The 
accuracy is 97.4%, which is 1.1% less than that of the traditional YOLOv5 model. The size of a 
single data file required for the GSEH-YOLOv5 model is 8.3 MB, which is 42.4% less than that 
of the traditional YOLOv5 model, and it can perform real-time object detection on the embedded 
platform at a frame rate of 8.77193 fps, which is 52.6% higher than that of the traditional 
YOLOv5 model. The accuracy is 97.5%, which is 1% less than that of the traditional YOLOv5 
model.

5. Conclusion

 In this study, we used the object-tracking algorithm of YOLOv5 to perform real-time 
identification of a chip contour and detect whether there is damage. We evaluated the 
implementation efficiency and the accuracy of the proposed algorithm experimentally. For real-
time object detection on an embedded platform, the results show that the performance of the 
improved GSEH-YOLOv5 model is better than that of the traditional model and the enhanced 
GSE-YOLOv5 model. As a result, the proposed approach achieves not only almost the same 
accuracy as the other two methods, but it also outperforms the others in terms of the object 
detection speed to significantly shorten the response time.
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