
1077Sensors and Materials, Vol. 34, No. 3 (2022) 1077–1089
MYU Tokyo

S & M 2874

*Corresponding author: e-mail: sftsai@kmu.edu.tw
**Corresponding author: e-mail: david9106432@gmail.com

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Chip Contour Detection Based on
Real-time Image Sensing and Recognition

Bao-Rong Chang,1 Hsiu-Fen Tsai,2* Chia-Wei Hsieh,1** and Mo-Lan Chen3

1Department of Computer Science and Information Engineering, National University of Kaohsiung,
700, Kaohsiung University Rd., Nanzih District, Kaohsiung 811, Taiwan

2Department of Fragrance and Cosmetic Science, Kaohsiung Medical University,
100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan

3NXP Semiconductors, Taiwan, Ltd., 10, Jing 5th Rd., Nanzih District, Kaohsiung 811, Taiwan

(Received March 28, 2021; accepted May 26, 2021; online published June 15, 2021)

Keywords: deep learning, Jetson Nano, object tracking, real-time image sensing and recognition, GSEH-
YOLOv5, attention mechanism, SENet, GhostNet

 In this study, the GSEH-YOLOv5 (GhostNet and SENet included in Head-YOLOv5)
algorithm is used to realize real-time object tracking and image sensing and recognition on the
Jetson Nano embedded platform. The purpose is to instantly detect the appearance contour of
the chip inside the chip slot. As soon as our system detects the damaged chip, a warning is
generated, and the correct location of the damaged chip in the chip slot is labeled. After that, the
operator immediately removes the damaged chip to prevent the next chip from being damaged.
Finally, we also analyze and compare the performance between the improved GSEH-YOLOv5
algorithm and the traditional YOLOv5 algorithm to verify that the proposed method has the
better performance.

1. Introduction

 With the promotion of Industry 4.0, innovative technology has brought significant reforms to
factories, introducing big data, cloud technology, automation and simulation, and other
technologies into factories, significantly increasing factory production capacity. However,
unexpected emergencies occur when the plant runs on a production line due to problems with
old equipment. For example, in automated chip transportation in a production line, if a chip is
accidentally crushed, the next batch of chips will also be affected. This will impact productivity
and yield, so how to minimize such losses is the primary goal of this research. Generally
speaking, object detection is composed of two modes. Mode 1 (single-stage) combines the two
procedures of identifying an object’s position and classification for processing. Mode 2 (two-
stage) performs these two procedures separately. Among the past object detection algorithms,
the accuracy of two-stage algorithms for object detection is better than that of single-stage
algorithms. Common two-stage algorithms are RCNN,(1) Fast-RCNN,(2) and Faster-RCNN,(3) but
the most significant disadvantage of two-stage algorithms is the calculation time. When there

https://doi.org/10.18494/SAM3378

mailto:sftsai@kmu.edu.tw
mailto:david9106432@gmail.com
https://doi.org/10.18494/SAM3378

1078 Sensors and Materials, Vol. 34, No. 3 (2022)

are a large number of frame-selected targets in an image, the subsequent object classification
must classify a large number of frame-selected targets, which is time-consuming. In particular,
many everyday applications often require real-time object detection. Typical applications include
vehicle tracking, street view analysis, mask-wearing testing, operator clothing testing, and
product inspection of factory production lines. Object detection has recently become a mature
technology, but the importance of the single-stage algorithms has increased because of their
higher speed while maintaining reasonable accuracy of object detection.(4) Therefore, many
applications require a single-stage algorithm for object detection in real-time. Moreover, current
single-stage algorithms have benefited from improved hardware and the development of
technology. Indeed, the accuracy of single-stage algorithms can be indistinguishable and even
exceed that of two-stage algorithms. In this study, we mainly use a single-stage YOLOv5
algorithm(5–7) released in 2020, which is expected to achieve a higher speed and higher accuracy
in image sensing and recognition.

2. Related Work

 According to Ref. 8, the core feature of the original YOLO is to treat an input image as many
grids with the same width and height and predict the objects in each grid. However, at that time,
YOLO used two bounding boxes in each grid to predict objects, and a grid had only one class.
Redmon and Farhadi(9) reported that YOLOv2 had a few newly improved methods to improve
the speed and accuracy of the model, such as batch normalization and an anchor box.
 Redmon and Farhadi newly added a residual network to YOLOv3, making the network
structure deeper.(10) Compared with YOLOv2, YOLOv3 had greatly improved accuracy while
maintaining comparable speed to the previous version.(11) The anchor box skills were retained in
the later YOLO versions. Moreover, in Ref. 12, the main goal of the authors was to design a fast
operating system using new functions. The proposed fast operation system was not only to
reduce the computation load dramatically but also to speedup target detector in the production
system and optimize parallel computing significally. After that, some of these new functions
were combined to achieve state-of-the-art results.
 Marco et al.(13) found that although compression algorithms can usually successfully reduce
the inference time, this is at the cost of reduced accuracy. They proposed a new alternative
method to execute a deep neural network (DNN) on embedded devices efficiently by
dynamically determining which DNN to use for a given input by considering the required
accuracy and inference time. Moreover, Sun et al.(14) proposed a target detection network for
embedded systems. The M-YOLO (Mobile-YOLO) model presented in their study combined
residual blocks(11) and depthwise separable convolution(15) of the feature selection layer to reduce
the computational complexity of the network.
 Howard et al.(16) reported that MobileNet mainly uses depthwise separable convolution(15) to
construct a lightweight(17) DNN. By performing a traditional convolution operation to generate
similar feature maps with lower computational costs, Han et al.(18) demonstrated that not all
feature maps need be generated.

Sensors and Materials, Vol. 34, No. 3 (2022) 1079

 The dominant sequence transduction model is based on complex recursive or convolutional
neural networks, including encoders and decoders.(19) The model with the best performance also
connects the encoder and decoder through the attention mechanism. Moreover, the innovative
feature of the SENet network is to pay attention to the relationship between feature vectors, so
that the model can actively learn the importance of features between different feature vectors.(20)

3. Method

 In the following steps, we will use Anaconda3 to build an executable environment for
YOLOv5 in Windows 10 and collect the data used. The traditional model of YOLOv5 is
modified to make it more suitable for real-time object detection of a Jetson Nano embedded
platform, which is a GPU-driven platform designed by NVIDIA with an executable environment.
Then, the improved model deploys Jetson Nano. Finally, we perform a test on Jetson Nano to
compare the performance of the traditional version of YOLOv5 with our improved version.

3.1 Architecture for on-site detection of chip contour

 Figure 1 shows the architecture of the YOLOv5 on-site chip detection system.(21,22) The
YOLOv5 model is trained with supervised learning. It is necessary to collect data and manually
label the collected data as the input of the training model. We have also improved the traditional
YOLOv5 model to make it more prominent on the Jetson Nano embedded platform. Finally, we
also made a warning system with chip detection as the main novelty of this study, which can
immediately provide helpful location information for users to view.

Fig. 1. (Color online) Architecture of YOLOv5 chip detection system.

1080 Sensors and Materials, Vol. 34, No. 3 (2022)

3.2 Data preparation and labelling

 A total of 553 training data and 89 verification data in the data set(23) provided by Taiwan
NXP Semiconductors Co., Ltd., are labeled through LabelImg, as shown in Part A of Fig. 1.
Firstly, the recorded video is outputted as a piece of an image with part of the video in each
frame. Then the part of the image with the detection target is labeled manually. Each image has
eight targets, which are labeled with their respective conditions, empty, occupied, or defective,
as shown in Fig. 2.

3.3 Model building and package installation

 Anaconda3 has commonly used packages with the primary executable environment of
YOLOv5 pre-installed, and thus users do not have to install them again in Windows 10.
However, YOLOv5 operates under the PyTorch framework, so it is still necessary to install other
PyTorch-related packages required by YOLOv5 on Anaconda3, as shown in Fig. 3.

Fig. 2. (Color online) Image labeling with LabelImg.

Fig. 3. (Color online) PyTorch tool kit installed in a workstation.

Sensors and Materials, Vol. 34, No. 3 (2022) 1081

3.4 Model training and performance evaluation

 In this study, we use PyTorch as the training framework and use the collected and labeled
data as the training data set to train a model suitable for the data. A screenshot of the actual
training process record is shown in Fig. 4. After the model is trained, the self-trained model is
evaluated. If the accuracy rating does not reach the expected level, it is necessary to adjust the
parameters or check whether the data set is labeled incorrectly or not carefully labeled. After
completing the adjustment, training is performed again to confirm that the accuracy rating
reaches the expected level. The mean average precision (mAP) is commonly used to judge the
quality of a model. The closer mAP is to 1, the better the performance of the model, as shown in
Fig. 5.

Fig. 4. Screenshot of the actual training process record.

Fig. 5. (Color online) Line chart of mAP with traditional YOLOv5.

1082 Sensors and Materials, Vol. 34, No. 3 (2022)

3.5 On-site image sensing and recognition

 We use the best model in the Jetson Nano platform.(24) This is the smallest embedded platform
in the NVIDIA Jetson series and is shown in Fig. 6. The detection results are output after the
Jetson Nano platform is used for image sensing and recognition. In fact, the result of the on-site
image sensing and recognition is acceptable according to the model performance as shown in
Fig. 7.

Fig. 6. (Color online) Jetson Nano embedded platform.

Fig. 7. (Color online) Chip detection showing results for (a) defective condition, (b) empty condition, and (c)
occupied condition.

(a) (b)

(c)

Sensors and Materials, Vol. 34, No. 3 (2022) 1083

3.6 On-site detection of chip contour

 The data analyzed include the classification of the object, the classification accuracy, and the
chip’s exact location, as shown in Fig. 8. This is because under the preset conditions, when a
damaged chip appears, the machine must stop operation immediately to avoid further damage.
Therefore, as long as the chip detection system detects a damaged chip, it will automatically
immediately send a message to the user informing them that a chip inside the chip slot on the
machine is damaged, as shown in Fig. 9. The Notepad text editor contains detailed information
of the chip, and its actual location is shown by the position of the red box.

3.7	 Modification	of	the	YOLOv5	network	architecture	

 The YOLOv5 network architecture is modified to reduce the number of calculations required
for feature extraction and the number of parameters used to generate valuable features. The main
modules used include the Ghost bottleneck block of GhostNet(18) and the SE module of SENet(20)
to replace the traditional CSP module, as shown in Fig. 10.

3.8	 Average	accuracy	of	GSE-YOLOv5	model

 The identification performance of the improved GSE-YOLOv5 model is evaluated, and the
overall average accuracy obtained by training with the improved model is shown in Fig. 11.

3.9	 Average	accuracy	of	GSEH-YOLOv5	model

 Next, the identification performance of the improved GSEH-YOLOv5 model is evaluated,
and the overall average accuracy obtained by training with the improved model is shown in
Fig. 12.

Fig. 8. Spatial location and accuracy of detected
objects. (a) Defective case. (b) Empty case. (c)
Occupied case.

Fig. 9. (Color online) Display information about the
exact location.

(a)

(b)

(c)

1084 Sensors and Materials, Vol. 34, No. 3 (2022)

Fig. 10. Architectures of three YOLOv5-related models. (a) Traditional YOLOv5 model, (b) GSE-YOLOv5 model,
and (c) GSEH-YOLOv5 model.

(a) (b) (c)

Sensors and Materials, Vol. 34, No. 3 (2022) 1085

4. Experimental Results and Discussion

4.1 Estimation of training time and video inference time

 We train the same training data set for the three YOLOv5-related models on a workstation.
The object detection performances of the three YOLOv5-related models are tested using Jetson
Nano with 1805 frames of test video, and the inference time needed for each image frame is
calculated. Equation (1) is used to calculate the average inference time AITijk of the three
YOLOv5-related models for each image frame, where VITijk represents the total test video’s
inference time and FN is the total number of test video frames.

 ,where 1, 2, ..., , 1, 2, ..., , 1, 2, ..., ijk
ijk

VIT
AIT i l j m k n

FN
= = = = (1)

Fig. 11. (Color online) Line chart of mAP of GSE-YOLOv5.

Fig. 12. (Color online) Line chart of mAP of GSEH-YOLOv5

1086 Sensors and Materials, Vol. 34, No. 3 (2022)

The input image size is set to 416 × 416, the batch size is set to 64, and the number of iterations is
set to 2000. The first row in Table 1 gives the training times of the three YOLOv5-related
models based on the same parameters, the second column gives the time needed to infer 1805
frames in the same test image, and the third column gives the average inference time for each
frame. Figure 13 shows the inference time for each frame of the test image.

4.2 Real-time detection speed and recognition accuracy

 The performance of real-time object detection depends on the number of recognizable frames
per second and the recognition accuracy. Equation (2) is used to calculate the number of frames
per second with which three YOLOv5-related models can detect objects in real time, where

Fig. 13. (Color online) Average inference time for each frame for (a) traditional YOLOv5 model, (b) GSE-YOLOv5
model, and (c) GSEH-YOLOv5 model.

Table 1
Training and inference times (unit: s).
Method YOLOv5 GSE-YOLOv5 GSEH-YOLOv5
Training 27784.8 27576 27475.2
Inference 540.701 490.012 410.458
Average 0.17591 0.13429 0.09010

(a) (b)

(c)

Sensors and Materials, Vol. 34, No. 3 (2022) 1087

RAITijk is the time required for each image in the real-time image source from the camera with
480 × 640 resolution . Equation (3) is used to calculate the accuracy of the three YOLOv5-related
models, where cijk represents the identified categories and APcijk represents the accuracy of each
class.

 1 ,where 1, 2, ..., , 1, 2, ..., , 1, 2, ...,ijk
ijk

FPS i l j m k n
RAIT

= = = = (2)

 ,where 1, 2, ..., , 1, 2, ..., , 1, 2, ...,ijk
ijk

ijk

APc
mAP i l j m k n

c
= = = = (3)

Equation (2) is used to calculate the speed in the real-time object detection with the Jetson Nano
embedded platform. After that, Eq. (3) is used to calculate the average accuracy of the three
YOLOv5-related models after training with the same parameters, as shown in Table 2.

4.3 Operational cost

 The number of parameters used and the number of calculations considerably vary among the
three YOLOv5-related models, as shown in Table 3.

4.4 Performance indicator

 We mainly focus on maintaining high accuracy and improving the frame rate when
implemented on the embedded platform, with the frame rate obtained from the traditional
YOLOv5 model used as the baseline. Equation (4) is used to calculate the frame rate difference
between the three YOLOv5-related models for the Jetson Nano embedded platform. Here, FPSijk
is calculated using Eq. (2), and Oi is the frame rate measured for the traditional YOLOv5 model.

 ,where 1, 2, ..., , 1, 2, ..., , 1, 2, ...,ijk
ijk

i

FPS
PI i l j m k n

O
= = = = (4)

Table 2
Speed and accuracy of models.
Method YOLOv5 GSE-YOLOv5 GSEH-YOLOv5
Speed (fps) 5.74713 6.09756 8.77193
Accuracy (%) 98.5 97.4 97.5

Table 3
Numbers of parameters and flops of models.
Method YOLOv5 GSE-YOLOv5 GSEH-YOLOv5
Parameters (#) 7251912 5310840 4182136
Flops (Gflops) 16.8 10.8 6.9

1088 Sensors and Materials, Vol. 34, No. 3 (2022)

For the traditional YOLOv5 model, the performance indicator is calculated to be 1 using Eq. (4),
and the performance indicators of the GSE-YOLOv5 and GSEH-YOLOv5 models are analyzed,
as shown in Table 4.

4.5 Discussion

 The experimental results show that the size of a single data file required for the traditional
YOLOv5 model is 14.4 MB, and real-time object detection can be carried out on the embedded
platform at a frame rate of 5.74713 fps with an accuracy of 98.5%. The size of a single data file
required for the GSE-YOLOv5 model is 10.6 MB, which is 26.1% less than that of the traditional
YOLOv5 model, and it can perform real-time object detection at a frame rate of 6.09756 fps on
the embedded platform, which is 6.1% higher than that of the traditional YOLOv5 model. The
accuracy is 97.4%, which is 1.1% less than that of the traditional YOLOv5 model. The size of a
single data file required for the GSEH-YOLOv5 model is 8.3 MB, which is 42.4% less than that
of the traditional YOLOv5 model, and it can perform real-time object detection on the embedded
platform at a frame rate of 8.77193 fps, which is 52.6% higher than that of the traditional
YOLOv5 model. The accuracy is 97.5%, which is 1% less than that of the traditional YOLOv5
model.

5. Conclusion

 In this study, we used the object-tracking algorithm of YOLOv5 to perform real-time
identification of a chip contour and detect whether there is damage. We evaluated the
implementation efficiency and the accuracy of the proposed algorithm experimentally. For real-
time object detection on an embedded platform, the results show that the performance of the
improved GSEH-YOLOv5 model is better than that of the traditional model and the enhanced
GSE-YOLOv5 model. As a result, the proposed approach achieves not only almost the same
accuracy as the other two methods, but it also outperforms the others in terms of the object
detection speed to significantly shorten the response time.

Acknowledgments

 This research was funded by the Special Research Project of the Ministry of Science and
Technology of the Republic of China (project numbers MOST 110-2622-E-390-001 and MOST
109-2622-E-390-002-CC3). We also sincerely thank Taiwan NXP Semiconductors Co., Ltd. for
providing assistance in this research.

Table 4
Performance indicators of models.
Method YOLOv5 GSE-YOLOv5 GSEH-YOLOv5
PI 1 1.06097 1.53631

Sensors and Materials, Vol. 34, No. 3 (2022) 1089

References

 1 R. Girshick: 2015 IEEE Int. Conf. Computer Vision (ICCV) (IEEE, 2015) 1440–1448. https://doi.org/10.1109/
ICCV.2015.169

 2 S. Ren, K. He, R. Girshick, and J. Sun: Proc. 28th Int. Conf. Neural Information Processing Systems (NIPS,
2015) 91–99. https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

 3 K. He, G. Gkioxari, P. Dollár, and R. Girshick: 2017 IEEE Int. Conf. Computer Vision (ICCV) (IEEE, 2017)
2980–2988.

 4 L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu: IEEE Access 7 (2019) 128837. https://doi.
org/10.1109/ACCESS.2019.2939201

 5 G. Jocher: YOLOv5, GitHub, https://zenodo.org/record/4418161#.X_iH_ugzaUk (accessed March 2021).
 6 T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie: 2017 IEEE Conf. Computer Vision and

Pattern Recognition (CVPR) (IEEE, 2017) 936–944. https://doi.org/10.1109/CVPR.2017.106
 7 S. Liu, L. Qi, H. Qin, J. Shi and J. Jia: 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition (IEEE,

2018) 8759–8768. https://doi.org/10.1109/CVPR.2018.00913
 8 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi: Proc. 2016 IEEE Conf. Computer Vision and Pattern

Recognition (CVPR) (IEEE, 2016) 779–788. https://doi.org/10.1109/CVPR.2016.91
 9 J. Redmon and A. Farhadi: Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE,

2017) 6517–6525. https://doi.org/10.1109/CVPR.2017.690
 10 J. Redmon and A. Farhadi: CoRR (2018). http://arxiv.org/abs/1804.02767
 11 K. He, X. Zhang, S. Ren, and J. Sun: Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR)

(IEEE, 2016) 770–778. https://doi.org/10.1109/CVPR.2016.90
 12 A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao: YOLOv4 (2020). http://arxiv.org/abs/2004.10934
 13 V. S. Marco, B. Taylor, Z. Wang, and Y. Elkhatib: CoRR (2019). http://arxiv.org/abs/1911.04946
 14 Y. Sun, C. Wang, and L. Qu: 2019 IEEE Int. Conf. Ubiquitous Computing & Communications (IUCC) and

Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services
(SmartCNS) (IEEE, 2019) 506–512. https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00110

 15 F. Chollet: 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, 2017) 1800–1807.
https://doi.org/10.1109/CVPR.2017.195

 16 A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam: CoRR
(2017). http://arxiv.org/abs/1704.04861

 17 X. Chen, J. Chen, X. Han, C. Zhao, D. Zhang, K. Zhu, and Y. Su: IEEE Access 8 (2020). https://doi.org/10.1109/
ACCESS.2020.2970461

 18 K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu and C. Xu: Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR) (IEEE, 2020) 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165

 19 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin: CoRR
(2017). http://arxiv.org/abs/1706.03762

 20 J. Hu, L. Shen, and G. Sun: 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition (IEEE, 2018)
7132–7141. https://doi.org/10.1109/CVPR.2018.00745

 21 N. Yu, Q. Xu, and H. Wang: IEEE Trans. Semicond. Manuf. 32 (2019) 4. https://doi.org/10.1109/
TSM.2019.2937793

 22 T. Nakazawa and D. V. Kulkarni: IEEE Trans. Semicond. Manuf. 31 (2018) 2. https://doi.org/10.1109/
TSM.2018.2795466

 23 M. Saqlain, Q. Abbas, and J. Y. Lee: IEEE Trans. Semicond. Manuf. 33 (2020) 3. https://doi.org/10.1109/
TSM.2020.2994357

 24 V. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge: IEEE Access 8 (2020). https://doi.org/10.1109/
ACCESS.2020.2964608

https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1109/ACCESS.2019.2939201
https://zenodo.org/record/4418161#.X_iH_ugzaUk
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1911.04946
https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00110
https://doi.org/10.1109/CVPR.2017.195
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/ACCESS.2020.2970461
https://doi.org/10.1109/ACCESS.2020.2970461
https://doi.org/10.1109/CVPR42600.2020.00165
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/TSM.2019.2937793
https://doi.org/10.1109/TSM.2019.2937793
https://doi.org/10.1109/TSM.2018.2795466
https://doi.org/10.1109/TSM.2018.2795466
https://doi.org/10.1109/TSM.2020.2994357
https://doi.org/10.1109/TSM.2020.2994357
https://doi.org/10.1109/ACCESS.2020.2964608
https://doi.org/10.1109/ACCESS.2020.2964608

