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	 With the application of various wireless communication technologies, the electromagnetic 
environment has become more complex, and the recognition of signal modulation has become 
increasingly difficult. In this paper, a hybrid model based on deep learning, which aims to 
quickly classify received modulated signals and help to plan spectrum resources, is proposed. 
The model is designed by considering the characteristics of convolutional neural networks 
(CNNs), global average pooling (GAP), gate recurrent units (GRUs), and other structures. Firstly, 
signal spatial features are extracted by convolution using a CNN, the dimension of the high-
dimensional feature map is reduced by GAP, then the signal temporal correlation is extracted 
using GRUs. Finally, modulation modes are classified in the softmax layer to classify and 
recognize the modulation modes of the received signal. Experimental results show that the 
average recognition rate of the model was 60.64% and the maximum recognition rate was 90%. 
The proposed method not only improves the recognition performance but also enhances the 
interpretability of the network.

1.	 Introduction

	 There are different modulation methods in communication technology, and the purpose of 
automatic modulation classification (AMC) is to detect the received signal and obtain its 
modulation information for further processing. AMC relies on modulation recognition (MR) 
technology and has been widely applied in military and civil fields, such as electronic warfare, 
threat analysis,(1) interference identification, and spectrum management.
	 Traditional MR methods include likelihood-based (LB) and feature-based (FB) methods.(2–4) 
The LB method obtains the final classification result by calculating and comparing the 
likelihood function of the received signal symbols in each modulation mode. It can achieve the 
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maximum probability in the theory of correct classification when channel conditions are 
determined.(5) However, this method has disadvantages of high computational complexity and 
the need for prior knowledge. The FB method extracts some features from the received signal 
and sends them to a classifier for scoring to obtain the final classification result. In the FB 
method, no prior knowledge is required, but a reasonable feature extraction method and a 
classifier are needed, and this method has the problem of limited recognition accuracy. It is 
difficult to extract features manually in a complex electromagnetic environment by using 
traditional methods, which leads to a low recognition rate.(6) Some AMC methods have been 
proposed to solve these problems, such as convolutional neural networks (CNNs),(7) convolutional 
long short-term deep neural networks (CLDNNs),(8,9) and deep residual nets (ResNet),(10) which 
automatically extract feature information from the received signal and send it to a classifier to 
obtain the classification result.
	 As a branch of machine learning, deep learning (DL) technology has achieved great success 
in image classification and speech recognition, providing favorable conditions for the 
development of AMC technology. O’Shea’s group first proposed a recognition model based on a 
CNN(11) and obtained a loss function of 0.874 and an overall recognition rate of 66.9%, which 
demonstrated the effectiveness of CNNs in AMC. In Ref. 12, an automatic recognition system 
for cognitive radio waveforms based on the Choi–Williams time-frequency distribution 
transform and a CNN classifier was explored, which had a high recognition rate under high-
power background noise but poor multisample classification ability. In Ref. 13, a novel two-step 
training method was proposed and transfer learning was introduced to improve the efficiency of 
retraining.(13) In Ref. 14, a CNN algorithm was used to extract the features of modulation from 
the received signal and convert them into a 2D image, realizing the classification of modulation 
under different SNR conditions.
	 The CNN is a classical AMC algorithm with a simple system structure and strong recognition 
ability compared with traditional methods, but it also has disadvantages of limited fitting ability 
and poor timeliness. Because it is difficult to further improve the performance of models by 
using a single network or extracting single features, researchers began to use the CNN structure 
combined with other technologies. Zhang et al. proposed an AMC feature fusion scheme using a 
CNN, which achieved a classification accuracy of 92.5% at a signal-to-noise ratio (SNR) of 
−4 dB.(15) In Ref. 16, a novel CNN framework based on spectrum analysis (SCNN) was designed 
for automatic modulation recognition (AMR). The received signal was converted into a spectrum 
image by the short-time discrete Fourier transform and used as the input of the SCNN. This 
approach achieved a high recognition accuracy but required a large amount of storage space and 
had a low training speed. In Ref. 17, the original I/Q data and the fourth-order cumulant (FOC) 
were combined to represent the modulated signal, and a deep CNN network and a deep long 
short-term memory (LSTM) network scheme were proposed to identify the modulated signal 
with a recognition rate of nearly 90%.(17) Zhang et al.(18) proposed a CNN–LSTM dual-stream 
structure in which each stream was composed of a CNN and LSTM. The features learned from 
the two streams mutually interacted in pairs to increase the diversity of features and improve 
performance. In Ref. 19, a HybridNet scheme that combined a CNN and a bidirectional gated 
recurrent unit (Bi-GRU) was proposed, allowing a network to capture the long-term dependence 



Sensors and Materials, Vol. 33, No. 12 (2021)	 4231

of a signal and improve the network performance. The purpose of this study is to find an AMR 
method that integrates multiple DL models. Our proposed method can extract spatial features 
and the temporal correlation, reduce the number of learning parameters, improve the recognition 
accuracy and speed, and improve the recognition rate at a low SNR.
	 The rest of the paper is organized as follows. Section 2 introduces the two main structures of 
the CNN and GRU. The CNN–GRU hybrid network model is proposed in Sect. 3. The 
performance of the proposed model and other similar models is analyzed in Sect. 4. Finally, 
conclusions and future work are presented in Sect. 5.

2.	 CNN and GRU

2.1	 CNN

	 The CNN is a feed-forward neural network used in image recognition and other fields. The 
convolution operation provides the CNN with a local receptive field and translation invariance. 
A typical CNN is composed of an input layer, a convolution layer, a pooling layer, a fully 
connected (FC) layer, and an output layer. The convolution layer is responsible for extracting 
image features, the pooling layer is responsible for sampling features to highlight the main 
features, and the FC layer is responsible for connecting all the incoming features and sending 
them to the classifier. Figure 1 shows a typical multilayer CNN structure.

2.2	 LSTM and GRU

2.2.1	 LSTM

	 LSTM is a time cycle neural network used to solve long-term dependence problems that 
cannot be solved by a general recurrent neural network (RNN). It can also solve the gradient 

Fig. 1.	 CNN structure.
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vanishing and gradient explosion problems. The superior performance of LSTM originates from 
the three “gates” in its structure, namely, the forget gate, input gate, and output gate. A typical 
single cell of LSTM is shown in Fig. 2. Several LSTM cells are connected to form the multilayer 
LSTM shown in Fig. 3.
	 In a cell of the LSTM network, the first step is to decide whether information from the 
previous timestamp should be kept or forgotten. The forget gate can filter (forget) some 
unimportant information from the previous cell. The equation for the forget gate is 

	 1( [ , ] )t f t t ff s W g h x b−= + ,	 (1)

where ft is the output of the forget gate, which is determined by the output ht−1 of the previous 
cell and the current input xt of the current cell, and determines which data will be forgotten by 
the cell state. Moreover, Wf and bf are the weight and bias, respectively.
	 The input gate is used to quantify the importance of the new information carried by the input 
and determines the information to be added to the cell state. The equations of the input gate are

	 1( [ , ] )t i t t ii W h x bσ −= ⋅ + ,	 (2)

	 

1tanh( [ , ] )t C t t CC W g h x b−= + ,	 (3)

Fig. 2.	 (Color online) LSTM cell.

Fig. 3.	 (Color online) Multilayer LSTM model.
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where it is the input of the input gate, which is determined by the output ht−1 of the previous cell 
and the input xt of the current cell, and Wi and bi are the weight and bias, respectively.  tC  is the 
candidate cell state, in which some values will be added. WC and bC are the weight and offset, 
respectively.
	 Then, the cell state is updated as 

	 

1 tt t t tC f C i C−= ∗ + ∗ ,	 (4)

where Ct is the cell state and ft is the output of the input gate, which is used to determine the 
information to be forgotten by the old cell state. Ct−1 is the old cell state, it is the output of the 
input gate, used to determine which information is input to the cell state, and  tC  is the candidate 
cell state.
	 The output gate controls the output. The equation of the input gate is Eq. (5). The final output 
of the unit is determined by the output gate and cell state, as can be seen from Eq. (6).

	 1( [ , ] )t o t t oo W h x bσ −= ⋅ + 	 (5)

	 tanh( )t t th o C= ∗ 	 (6)

Here, ot is the output of the output gate, the cell state acquires a value of −1 to 1 through the tanh 
function, ht is the final output, determined by ot and Ct, and Wo and bo are the weight and bias, 
respectively.

2.2.2	 GRU

	 A GRU is an evolved form of LSTM with a simpler structure of only two gates (Fig. 4). It 
combines the forget and input gates into a single update gate and uses a reset gate instead of an 
output gate. It also combines the cell and hidden states, so that it needs fewer training parameters 

Fig. 4.	 (Color online) GRU.
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to achieve the same effect as LSTM with faster implementation and a lower computational 
load.(20,21)

	 The work processes of a GRU are described by Eqs. (7)–(10). The information input to the 
GRU can be selected as a candidate output by the reset gate, and then the update gate combines 
the input and candidate output to obtain the final output.

	 1( [ , ] )t r t t rR W h x bσ −= ⋅ + 	 (7)

	 1( [ , ] )t z t t zZ W h x bσ −= ⋅ + 	 (8)

	 

1tanh( [ ,( )] )t h t t t tH W x R H b−= ⋅ ∗ + 	 (9)

	 

1(1 ) tt t t tH Z H Z H−= − ∗ + ∗ 	 (10)

Here, Rt and Zt are the outputs of the reset and update gates,  tH  is the candidate output, Ht is the 
final output of the cell, and W and b are weight and bias, respectively.

3.	 CNN–GRU Model for AMR

	 The CNN is mainly used in the field of image recognition; for wireless signal recognition, the 
time-domain information of the signal can also be constructed as a time-domain graph. In 
AMR, the CNN can learn the waveform characteristics of different modulation modes as the 
classification basis. It has already been demonstrated that a CNN can provide an additional 
5–10% accuracy at a low SNR (<−2 dB).(22) Inspired by the CLDNN model, we also use a CNN 
as the first unit to obtain information in the proposed model to extract the features of the input 
signal.
	 Different from the CNN, a GRU is used to solve long-term dependence problems. For our 
AMR, the input data is the I/Q time-series signal before and after the sequences are correlated. 
Thus, we can find the correlation between them by using a GRU. 
	 Global average pooling (GAP) can be used instead of the FC layer in a CNN.(23) Compared 
with an ordinary pooling layer, GAP does not take the value in the window but uses each feature 
map as the unit to calculate the mean value (or its window is the feature map). The difference 
between GAP and flattening is shown in Fig. 5. GAP can regularize the structure to prevent the 
model from overfitting. Compared with the FC layer, GAP makes the relationship between each 
category and the feature map more intuitive.(10) At the same time, because there are no 
parameters in GAP to be trained or adjusted, the problem of overfitting is avoided and the 
training is faster.
	 On the basis of the complementary characteristics of the CNN and GRU, we propose an 
AMR network model, as shown in Fig. 6. The scheme combines a CNN with a GRU by using 
GAP as the connecting unit between them. This scheme reduces the dimension of the high-
dimensional data output from the CNN.
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Fig. 5.	 (Color online) Schematic diagram of flattening and GAP operation process.

Fig. 6.	 (Color online) AMR network model based on CNN and GRU.
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	 The model is composed of several parts to map the input I/Q signals into 11 modulation 
modes. The first part of the network consists of three convolution layers; the first layer adopts 
512 filters with a size of 2 × 3 taps, the second layer adopts 512 filters with a size of 1 × 3 taps, 
and the third layer adopts 256 filters with a size of 1 × 3 taps.
	 Each convolution layer follows a max-pooling layer with a window of 1 × 2 and a dropout 
layer with a parameter of 0.4. The feature maps are sent from convolution and pooling to GAP, 
and each feature map is transformed to 2D then input into a GRU module for learning. The final 
results are sent to the FC layer with softmax as the activation function to classify the modulation 
mode of the input signal.

4.	 Experimental Results and Analysis

	 In this section, we evaluate the performance of our proposed scheme by using Keras and 
TensorFlow with the RadioML2016.10a and RadioML2016.04C datasets.

4.1	 Experimental parameters and datasets

	 The RadioML2016.10a and RadioML2016.04C open datasets are provided by O’Shea’s 
group(24) and generated by GNU Radio.(25) Several factors, such as the center frequency offset, 
sampling rate offset, additive Gaussian white noise, and multipath fading, are considered in 
these datasets to make these datasets realistic. The details of the two datasets are shown in 
Table 1.
	 We set the maximum number of iterations as 300, input 1024 pieces of data in each round, 
and use the early-stopping mode to avoid overfitting. If the loss function does not decrease after 
12 consecutive training trials, the training is stopped.

4.2	 Baseline

	 In this section, we introduce the baseline in our experiment.
1) We use the RML2016.10a dataset combined with the one-layer GRU scheme shown in Fig. 7, 
which was proposed by Hong et al.,(26) which consists of a one-layer GRU and two dense FC 

Table 1
Contents of experimental datasets.

RML2016.10a RML2016.04C

Modulation modes
11 classes (WBFM, AM-SSB, AM-DSB, 
BPSK, QPSK, 8PSK, 16QAM, 64QAM, 

BFSK, CPFSK, and PAM4)

11 classes (WBFM, AM-SSB, AM-DSB, 
BPSK, QPSK, 8PSK, 16QAM, 64QAM, 

BFSK, CPFSK, and PAM4)
Length per sample 128 128
Number of samples 220000 162060
Signal dimension 2 × 128 per sample 2 × 128 per sample
Duration per sample 128 µs 128 µs
Sampling frequency 1 MHz 1 MHz
Samples per symbol 8 8
SNR (dB) −20:2:18 −20:2:18
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layers. The GRU layer uses the ReLU activation function, and the final dense layer is the 
softmax output layer, which is used to calculate the classification probability of each modulation 
to achieve classification. RMSprop is used as the optimization algorithm of gradient descent.
2) We use the RMLl2016.04C dataset combined with the CNN–GRU scheme shown in Fig. 8, 
which was proposed by Tan et al.,(27) which consists of two convolution layers, one GRU layer, 
and one FC layer. The convolution layers use ReLU as the activation function and the FC layer 
uses softmax as the activation function to classify the received modulation signals. The 
convolution and GRU layers use dropout to avoid overfitting. Adam is used as the optimization 
algorithm of gradient descent.

4.3	 Accuracy analysis

	 To evaluate the effectiveness of the proposed model, we compare the performance 
characteristics of different DL models and discuss the effects of different structures and 
parameters. The input signal is represented by the complex time-domain vector (baseband I/Q 
data) in the baseline scheme in Sect. 4.1 to reduce the computational complexity.
	 We compared the performance characteristics of our proposed model with those of five other 
models [ResNet,(28) Inception,(28) DenseNet,(29) CLDNN,(28) and CNN(11)] that use a CNN and an 
LSTM-RNN. The experimental results in Fig. 9 show that our proposed model starts to 
outperform other models when SNR > −8 dB, the recognition rate is nearly 80% when 
SNR = −2 dB, and the maximum recognition rate of 89.65% is reached when SNR = 14 dB, 

Fig. 7.	 (Color online) One-layer GRU network structure.

Fig. 8.	 (Color online) CNN-GRU network model.
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which is 3.5 and 10 percentage points higher than those of the baseline and original CNN 
models, respectively.
	 To obtain better performance, we studied the effects of different structures and parameters on 
the model performance. In Fig. 10, we can see that when the number of GRUs is greater than 32, 
the accuracy is better than CNN.
	 In Fig. 11, we first fixed the number of GRUs in the first layer to 64 and 128, then compared 
the recognition rate in different GRUs. The results show that the accuracy is low when using a 

Fig. 9.	 (Color online) Comparison of test accuracies of different methods.

Fig. 10.	 (Color online) Accuracy with different numbers of units (one-layer GRU).
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Fig. 11.	 (Color online) Accuracy with different numbers of units (two-layer GRU).

Fig. 12.	 (Color online) Test accuracy with different SNRs.

small number of GRUs (16 units), even if a multilayer GRU is used. When we add GAP, the 
accuracy improves by 3–7 percentage points. When the GRU structure with two layers and 64 
units is used, the model achieves an average recognition rate of 60.64% and a maximum 
recognition rate of 90%.
	 In Fig. 12, we compare our proposed model with the model in Ref. 27 for the RML2016.04C 
dataset.(27) The experimental results show that the proposed model achieves better results at both 
high and low SNRs.
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4.4	 Confusion matrix analysis

	 We analyze the classification confusion matrix of several important SNR nodes in the 
network model training with 64 GRUs in one layer shown in Fig. 13.
	 We found that when the SNR is low (−20 dB), the model classifies all the modulation modes 
as AM-SSB. In this case, noise and other interference factors are mainly parts of the received 
signal, which makes the received signal close to Gaussian noise. The amplitude of the SSB 
modulation mode is lower than that of the DSB modulation mode in the time domain and is 
closer to Gaussian noise and similar to AM-SSB in the time domain. When SNR > −8 dB, a 
clear diagonal line is gradually formed in the confusion matrix. When SNR > −2 dB, a higher 
recognition rate can be achieved, and when SNR = 14 dB, the recognition rate is the highest. In 
Figs. 13(c) and 13(d), it is difficult to distinguish QAM16 and QAM64. This is because QAM16 
and QAM64 essentially belong to the same modulation mode, and the latter includes the former 

Fig. 13.	 (Color online) Confusion matrix of one-layer 64-unit GRU model.

(a) (b)

(c) (d)
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in the constellation diagram. BPSK and WBFM are also difficult to distinguish owing to the 
received signal having a period of silence.

5.	 Conclusions

	 In this paper, we proposed an AMR model that uses different structures to extract and 
classify features with different dimensions automatically. To evaluate the performance of the 
proposed model, we automatically identified 11 common signal modulation modes in the public 
data provided by Ref. 24 and compared them with some existing methods. The experimental 
results show that the highest classification accuracy was improved from 80 to 90% and the 
comprehensive recognition rates on the RML2016.10a and RML2016.04C datasets were 60.64 
and 73.2%, respectively.(24) We also explored the differences between the structure and 
parameters of the model.
	 With the development of computer and communication technologies, many wireless devices 
with different types of modulation will coexist in the same limited frequency band, and the 
electromagnetic environment will become more complex. To effectively manage frequency 
resources, it is necessary to identify signals in air. Wireless sensor networks can form a 
distributed monitoring network to detect, identify, monitor, and locate these signals to improve 
the recognition ability of a single sensor node. Our proposed method can be applied to such a 
sensor node by reducing the calculation time without decreasing the accuracy.
	 In our future work, we will continue to improve the performance of the model while also 
simplifying it as much as possible, so that the model requires fewer training parameters and has 
a higher speed. We also plan to find an adaptive model so that the appropriate method for 
recognition is automatically chosen according to the SNR to achieve a higher overall recognition 
rate.
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