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	 Extremely sensitive odor sensors are required for odor searching in mobile robots. The male 
silkmoth (Bombyx mori) is a candidate biosensor because of its high sensitivity to the conspecific 
sex pheromone with stereotypic searching behavior. Furthermore, the odor preferences of 
silkmoths can be modified using genetic tools. Therefore, techniques that can easily detect the 
odor response of silkmoths with high sensitivity have become important for odor detection and 
searching. In recent years, machine learning has been used to classify the behaviors of silkmoths 
to estimate the timing of odor reception. Therefore, it is possible to utilize a silkmoth’s behavioral 
response as an olfactory sensor for robotic odor searching. In this work, we developed an odor- 
searching mobile robot with an odor sensing device based on a silkmoth’s walking pattern. First, 
we collected behavioral data with and without odor stimuli. Then, we predicted the presence of 
an odor using a support vector machine. Finally, we implemented the sensing device in an odor- 
searching robot and demonstrated that the classifier performance was sufficient for a robot to 
localize an odor source by utilizing artificial searching algorithms. These results indicated the 
feasibility of an insect-behavior-based olfactory sensor for robotic odor searching.

1.	 Introduction

	 The practical application of mobile robots that can detect target odors and identify their 
source in a real environment is expected for security and rescue missions. To realize robotic odor 
searching, technologies such as odor detection, target odor identification, and odor source 
localization have been developed in the field of engineering.(1–4) On the other hand, olfaction 
provides important sensory information for animals for survival and reproduction, such as for 
finding food, nests, and mating partners or avoiding predators and hazardous areas. Therefore, 
the olfactory sensory-motor system in animals has motivated engineers to develop bioinspired, 
biomimetic,(1–4) and biohybrid robots(5,6) to find odor sources. 
	 The development of olfactory sensors that can detect a specified odor in a turbulent flow 
(common in the living environments of most organisms(7)) is one of the major challenges in 
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realizing robotic odor searching. There are three requirements for the olfactory sensors used in 
odor searching tasks. First, a sensor must detect a target odor away from an odor source 
(sensitivity). Second, the sensor must capture the temporal change in odor reception (temporal 
resolution) because a robot moves in an odor environment where the odor distribution is 
intermittent and changes with time. Third, the sensor must distinguish a specified target odor 
from numerous other odorants flowing in air (selectivity). The performance of conventional 
chemical sensors used in robotics, such as semiconductor metal oxide gas sensors, is inadequate 
in terms of these three requirements when they are compared with the odor sensing ability of 
animals.(1) Insects are candidate model organisms for developing biosensors that meet all these 
requirements.(8) The odor sensitivity of insect antennae, which are their olfactory organs, is 
extremely high. Flying insects can detect an odor far from an odor source. The male gypsy 
moth, Lymantria dispar, follows the plume of the conspecific sex pheromone over distances 
larger than 80 m.(9) The male pea moth, Cydia nigricana, can detect a pheromone 200 m from a 
source.(10) In addition, the male silkmoth, Bombyx mori, initiates odor searching behavior using 
170 sex-pheromone molecules. In terms of temporal properties, the yellow fever mosquito, Aedes 
aegypti, flies in the direction of a carbon dioxide source only 30 ms after coming in contact with 
a carbon dioxide plume.(11) The time-resolved odor response can be evaluated by measuring the 
odor response of insect antennae using electroantennograms (EAGs).(12) The EAGs of B. mori 
resolve the temporal structure of the pheromone oscillating up to 25 Hz.(13) Furthermore, the 
EAG measurements of certain model insects (bees, moths, locusts, and cockroaches) resolve 
odor pulses more than 100 Hz with a response latency of less than 2 ms.(14) Regarding selectivity, 
pheromone receptors are categorized as specialists with high selectivity for the conspecific sex 
pheromone even in the presence of background odors. Moreover, generalist-type olfactory 
receptors that respond to general odors have different selectivities for a particular odor.(15) 
Therefore, insect antennae and EAG measurement have been used as olfactory sensors for 
detecting a specific pheromone(16,17) and discriminating odors.(18–20) Furthermore, insect 
antennae have also been used as olfactory sensors for mobile robots to evaluate searching 
algorithms in actual odor environments.(21–24) However, EAG measurement has the disadvantage 
of being susceptible to electrical and mechanical noise.(25,26) In particular, when EAG 
measurement is performed using mobile robots, the odor response decreases over time if isolated 
antennae are used.(22)

	 If the odor response measured from antennae can be directly linked to specific behaviors, it 
is possible to use an odor-triggered behavior as an index of the presence or absence of the odor 
with high sensitivity.(27) This is the basis of insect-behavior-based biosensors [Fig. 1(a)].(28) The 
innate or learned preference or aversion to a specific odor has been tested by monitoring 
searching, feeding, and avoidance behaviors.(29,30) In addition, portable detecting devices that 
perform training and testing using image processing or electromyography have been developed. 
For example, parasitic wasps, Microplitis croceipes, were trained using 3-octanone associated 
with food via classical conditioning, and their searching behavior in response to the odor was 
automatically detected from images.(31) Behavior-based sensors are easy to set up and tolerant to 
electrical and mechanical noise compared with electrophysiological methods such as the use of 
EAGs and electromyograms.(32) Thus, behavior-based sensors are suitable for use in odor- 
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searching robots. However, there are no studies on odor-searching robots that use insect-
behavior-based olfactory sensors. Therefore, the aim of this study is to develop an odor-searching 
mobile robot with an insect-behavior-based olfactory sensor [Fig. 1(b)].
	 We selected silkmoths (B. mori) for our work. Silkmoths have a stereotypic walking pattern 
for searching for female sex pheromones.(33) They cannot fly and are quiescent without a 
pheromone stimulus. They start walking straight (surge) when they receive a pheromone 
stimulus and perform zigzagging turns when they lose the odor [Fig. 1(c)]. Therefore, these two 
behavioral states are useful indications of the presence or absence of the odor [Fig. 1(d)], which 
can be classified using machine learning techniques. The locomotion parameters that 
characterize the behavioral states are translational velocity (fore/aft) and turn angular velocity, 
which increase and decrease during pheromone reception, respectively [Fig. 1(e)]. Chew and 
Kurabayashi employed a hierarchical classification method to classify the behavior and predict 
the odor reception of silkmoths.(34) Shigaki et al. measured the electromyograms of the flight 
muscles of silkmoths during the searching behavior, classified the behavioral states employing a 
support vector machine (SVM), and predicted pheromone reception.(35) These studies 
demonstrate the potential use of silkmoth behaviors for olfactory sensors. However, the 
utilization of the silkmoth behavior as an olfactory sensor for an odor-searching mobile robot has 
not yet been reported. In our preliminary study, we proposed the concept of a mobile robot with 
a silkmoth-behavior-based olfactory sensor that employed the SVM classifier.(36) In this study, 
we developed a mobile robot platform that enabled the training and testing of a behavior 
classifier, as well as odor searching by itself. We conducted odor searching experiments using a 

Fig. 1.	 (Color online) Insect-behavior-based olfactory sensor and odor searching behavior of a silkmoth. (a) 
Diagram of an insect-behavior-based olfactory sensor. If behavior A is directly linked to odor reception, the 
classified behavior can be regarded as a binary output of the presence or absence of odor. (b) Diagram of an odor- 
searching mobile robot equipped with an insect-behavior-based olfactory sensor. Arbitrary searching algorithms 
that accept a binary input can be used for the robot. (c) A silkmoth performs a surge during odor (sex pheromone) 
perception and consecutive turns when it fails to detect the odor. (d) Two behavioral states represent the presence or 
absence of odor. (e) Fore/aft (positive/negative) velocity (v) and absolute angular velocity (|ω|) of a silkmoth in 
response to pheromone stimuli (yellow). Data obtained from 20 stimuli of a single stimulus sequence (gray), mean 
value (red), and 25 and 75% quantiles (black) are shown. Data are from Horibe et al.(36)

(a)

(b)

(c)

(d) (e)
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combination of the behavior-based olfactory sensor and artificial searching algorithms, and 
demonstrated the practicality of the behavior-based olfactory sensor in robotic odor searching 
tasks.

2.	 Robot Hardware

	 We developed an odor-searching robot equipped with a behavior-based olfactory sensor 
(Fig. 2). We used a commercially available mobile robot with dimensions of 215 mm (W) × 
300 mm (D) × 100 mm (H) (10009, Nexus Robot, Hong Kong, China) as a platform for odor 
sensing and searching. The hardware of the behavior-based odor sensor was composed of a 
spherical treadmill and an odor suction device. The appearance of the robot was similar to the 
silkmoth-driven mobile robot.(37) However, the robot developed in this study used silkmoths 
only for detecting odors and implemented arbitrary searching algorithms. A male silkmoth was 
tethered at the dorsal thorax, and it walked on a polystyrene ball supported by air. An optical 
mouse (TS-0806, Trade Works, Tokyo, Japan) attached to the rear of an air-supported 
polystyrene ball (diameter of 50 mm) measured the fore/aft velocity (v) and left/right angular 
velocity (ω) of the silkmoth. The silkmoth responded to the conspecific female sex pheromone 
released from an odor source, which was suctioned by a DC fan (9BD12FC6-1, Sanyo, Osaka, 
Japan) through an intake with dimensions of 50 mm (H) × 100 (W) mm. The locomotion data 
were acquired at a sampling rate of 50 Hz using an Arduino Uno with a USB host shield 
(SFE-DEV-09947, SparkFun Electronics, Boulder, CO, USA). Then, the data were sent to a 
laptop (Core i5 7200U with 8 GB memory) via Bluetooth for behavior classification and odor 
detection. Finally, the detected odor signals were sent to the mobile robot, and the robot searched 
for the odor using an arbitrary searching algorithm.

Fig. 2.	 (Color online) Odor-searching mobile robot with the insect-behavior-based olfactory sensor. (a) Appearance 
of the robot. (b) Diagram of the robot.

(a) (b)
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3.	 Behavior-based Olfactory Sensor

3.1	 Experimental setup

	 We used male adult silkmoths. Pupae were purchased from the National BioResource Project 
(https://shigen.nig.ac.jp/silkwormbase/), aged within ten days after eclosion, and maintained at 
25 ℃. A male silkmoth was attached to a 3D-printed bar with a flexible attachment using an 
adhesive (G17, Konishi, Osaka, Japan). The animal preparation for the spherical treadmill was 
carried out by following a previous study.(5) We collected behavioral data and the corresponding 
timing of an olfactory stimulus as teacher data to establish the classifier of silkmoth behaviors 
(24 data from 12 moths). Data were collected using the spherical treadmill on the robot [Fig. 3(a)]. 
The tethered silkmoth was stimulated by the major component of the conspecific female sex 
pheromone [bombykol: (E,Z)-10,12-hexadecadien-1-ol]. We applied 1000 ng of bombykol 
dissolved in n-hexane to a piece of filter paper, placed the piece in a glass tube, connected the 
glass tube to an external olfactory stimulator, and released the odor in front of the air intake of 
the robot. The odor was delivered to the silkmoth through the onboard odor delivery system. In 
the previous study, we collected behavioral data on the basis of a constant stimulus condition 
(the stimulus was applied for 800 ms, followed by a pause of 4200 ms, then this procedure was 
repeated).(36) However, the data should be collected on the basis of a stimulus condition close to 
an actual environment, where an odor arrives intermittently with variable durations (odor 
presence) and intervals (odor absence).(38) To reproduce the realistic odor stimulation, we 
measured the temporal change in the odor concentration of the arena, where the odor searching 
experiment was conducted (for the conditions, see Sect. 4.2) with a photoionization detector 
(miniPID 200B, Aurora Scientific, Aurora, Canada), and determined the stimulus condition of 

Fig. 3.	 (Color online) Experimental condition for locomotion data collection. (a) Behavioral experiment setup. The 
devices surrounded by the dashed line are attached to the robot. (b) Example of locomotion data (vt, ωt) and the 
timing of odor stimuli (St).

(a) (b)

https://shigen.nig.ac.jp/silkwormbase/
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odor on the basis of the measurement. Odor stimuli were applied intermittently with variable 
durations [td (ms)] and intervals [ti (ms)]. The distributions of td and ti ( f1(ts), f2(ti)) were defined 
as
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where μ = 600 ms is the mean of td, and Rmin and Rmax (ms) represent the lower and upper limits 
of ti, respectively. A sample measurement of behavioral data (vt, ωt) in response to pheromone 
stimuli is shown in Fig. 3(b). The pheromone stimuli lasted for 100 s for each individual, and 
locomotion data were obtained.

3.2	 SVM classifier

	 Figure 4 shows the overview of the SVM classifier. We trained a binary classifier (odor 
presence/absence) using the data collected over 100 s. An SVM, which is a supervised machine 
learning model that solves classification problems, was used for this study because of its low 
computational cost. The radial basis function (RBF) kernel was applied to the classifier because 
it was reported to be better than other kernels in previous research in terms of estimating the 
timing of odor reception from silkmoths.(35) The behavioral data (vt, ωt) were smoothed using the 
moving average for data processing. Then, six features were extracted as feature vectors, xt, at 
each time t, 

Fig. 4.	 (Color online) Overview of the classifier establishment.
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where vt and ωt represent the translational and angular velocities of the silkmoth after smoothing 
at time t (ms), respectively. The window width of the moving average (300 ms), the number of 
features (three each for vt and ωt), and time width for extracting features (200 ms) were 
determined on the basis of the performance of the classifier assessed by F1 score (explained 
below). The timing of the olfactory stimulus (input), which was defined 300 ms after the 
electromagnetic valve was switched on/off owing to the time required for odor delivery, was 
used as teacher signals, st−300. The first 80 s of xt and st−300 were used as training data, and the 
remaining 20 s were used as test data. The numbers of positive and negative data (responses to 
the presence and absence of the odor, respectively) for training were balanced by undersampling 
either. Then, we conducted cross-validation to obtain the parameters of the SVM with the RBF 
kernel. In the validation, the training data were divided into five parts, standardized, and input 
to the SVM. Finally, we determined the parameters of the classifier based on F1 score. The 
classifier was implemented using scikit-learn in Python.(39) Combined with the classifier, the 
silkmoth and spherical treadmill worked as a binary olfactory sensor that predicted the presence 
of the odor. The time required to collect the data and establish the classifier was 5 min.

3.3	 Evaluation of the behavior-based olfactory sensor

	 The classifier was trained using individual test data and we calculated Precision, Recall, 
Specificity, and F1 score [Fig. 5(a) and Table 1]. Precision represents the ratio between correct 

Fig. 5.	 (Color online) Classification results. (a) Classification metrics. Mean values (24 classifiers) and standard 
deviations are shown. (b) Distributions of vt and ωt sorted by the classification criteria. 

(a) (b)



4192	 Sensors and Materials, Vol. 33, No. 12 (2021)

predictions and all positive predictions. Recall represents the true positive rate, which is the ratio 
between correct positive predictions and all actual positives. Specificity represents the true 
negative rate, which is the ratio between correct negative predictions and all actual negatives. F1 
score represents the harmonic mean of Precision and Recall, which becomes high only when 
Precision and Recall are high. These classification metrics were calculated using the classifier 
and test data;

	 TPPrecision
TP FP

=
+

,	 (4)

	 TPRecall
TP FN

=
+

,	 (5)

	 TNSpecificity
TN FP

=
+

,	 (6)

	 21 Precision RecallF score
Precision Recall
× ×

=
+

,	 (7)

Table 1
Results of odor searching test for all trials and the classifier performance.

Localization test Classification metrics
Algorithm Moth Localization Time (s) Distance (m) Precision Recall Specificity F1 score AUC
Spiral 0 Success 128 11.8 0.650 0.928 0.780 0.857 0.963
Spiral 1 Success 119 17.2 0.529 0.945 0.741 0.840 0.951
Spiral 2 Success 204 33.4 0.621 0.796 0.752 0.879 0.865
Spiral 3 Success 183 16.4 0.510 0.982 0.717 0.867 0.912
Spiral 4 Failure — — 0.524 0.695 0.803 0.848 0.878
Spiral 5 Success 113 8.9 0.556 0.869 0.630 0.826 0.841
Spiral 6 Success 202 16.6 0.701 0.953 0.746 0.901 0.962
Spiral 7 Success 107 10.2 0.505 1.00 0.712 0.895 0.949
Spiral 8 Success 87 4.1 0.480 0.918 0.753 0.865 0.903
Spiral 9 Success 196 13 0.628 0.902 0.697 0.888 0.916
Spiral 10 Success 204 25.5 0.818 0.930 0.612 0.888 0.957
Spiral 11 Success 55 3.1 0.619 0.942 0.749 0.840 0.949
Hex-path 0 Success 76 6.2 0.611 0.88 0.643 0.851 0.899
Hex-path 1 Success 60 4.8 0.562 0.961 0.689 0.807 0.930
Hex-path 2 Failure — — 0.675 0.898 0.696 0.855 0.935
Hex-path 3 Failure — — 0.627 0.824 0.852 0.882 0.923
Hex-path 4 Success 63 4.9 0.502 1.00 0.712 0.865 0.934
Hex-path 5 Success 38 3.1 0.567 0.959 0.742 0.846 0.962
Hex-path 6 Success 103 8.2 0.562 0.839 0.829 0.880 0.945
Hex-path 7 Failure — — 0.717 0.850 0.760 0.828 0.913
Hex-path 8 Failure — — 0.519 0.934 0.726 0.856 0.919
Hex-path 9 Failure — — 0.463 0.901 0.834 0.788 0.933
Hex-path 10 Failure — — 0.322 0.872 0.755 0.824 0.811
Hex-path 11 Success 37 4.2 0.500 0.840 0.602 0.706 0.795
Spiral: spiral surge algorithm
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where TP, FP, TN, and FN are the absolute numbers of true positives, false positives, true 
negatives, and false negatives, respectively. 
	 The mean and standard deviation of the classification metrics were as follows: 
Precision = 0.574 ± 0.101, Recall = 0.901 ± 0.070, Specificity = 0.731 ± 0.066, and 
F1 score = 0.849 ± 0.041 (Table 1). Recall and F1 score were comparable to the values reported 
in the previous studies of behavior classification in silkmoths (Recall, 0.72–0.93;(34) F1 score, 
0.71–0.91(35)). However, Precision was lower than the value reported in a previous study 
(0.60–0.88(34)). Figure 5(b) shows the distributions of vt and ωt obtained from a single trial when 
the classifier predicted the presence or absence of the odor. The absolute values of ωt and vt were 
high and low, respectively, when the classifier predicted odor absence, which indicated the 
zigzagging turns of the silkmoth. In contrast, the absolute values of ωt and vt were low and high, 
respectively, when the classifier predicted odor presence, which indicated a surge. Figure 6 
shows the performance characteristics of the seven representative classifiers represented as 
receiver operating characteristic (ROC) curves and their predicted timings of odor presence/
absence compared with the actual timings. The area under an ROC curve (AUC) enables us to 
evaluate Recall and Specificity. AUC = 1 indicates a perfect classifier and AUC = 0.5 indicates a 
random classifier. The comparison of the predicted and actual timings showed that their 
similarity was closely related to the AUC. 

Fig. 6.	 (Color online) ROC curves of seven representative classifiers (including the highest and lowest AUCs, see 
Table 1) and corresponding prediction of odor presence/absence. The black point in each ROC curve indicates the 
threshold (0) decision value used for the binary classification. In each classification result, the predicted and actual 
odor presence (1) or absence (0) values are shown in the upper and lower traces, respectively.
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4.	 Robot Experiment

4.1	 Animal and robot preparation

	 The robot experiment was conducted after collecting the behavioral data and establishing the 
classifier. The treadmill was surrounded by white paper to minimize the effect of self-induced 
optic flow because male silkmoths respond to optic flow and turn during a surge.(40) An acrylic 
cover with white balls was attached to the top of the robot to track the position of the robot using 
software (DIPP Motion V, Ditect, Tokyo, Japan).

4.2	 Experimental conditions

	 The robot experiment was conducted in an area [2.5 m (W) × 3 m (L), Fig. 7(a)] in a room. 
The odor source was a piece of filter paper on which 5 μg of bombykol was applied. The source 
was set at the end of the area, and a fan blew air from behind the source (the windspeed was 1−2 
m/s at 1 m downwind from the source). A preliminary observation showed that six out of seven 
silkmoths walked toward the odor source (1 μg bombykol) from a distance of 3−4 m; thus, the 5 
μg of bombykol was sufficient for the silkmoths to exhibit a surge in response to pheromone 
reception from a distance of 3−4 m. The position of the source was defined as the origin. The 
robot started searching for the odor source from an area (−50 cm < x < 50 cm, 
−300 cm < y < −250 cm), initially heading in the direction of ±45° (0° indicates the orientation of 
the y-axis). The experiment was continued for 5 min, and the robot movements were captured by 
a video camera. The robot was assumed to have reached the odor source at a distance of 50 cm 
from the source. The trial was assumed to have failed if the robot did not reach the source within 
5 min or exited the area. Robot experiments were also conducted without the odor source as 
control experiments. 
	 We characterized the odor plume structure before performing the robot experiments with the 
behavior-based odor sensor. A paper containing 3 mL of 70% ethanol was placed as an odor 

Fig. 7.	 (Color online) Experimental conditions. (a) Experimental area for odor searching experiments. (b) 
Distribution of odor concentration in the area.

(a) (b)
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source, and the odor was blown by a fan. The odor concentration was measured at 50 cm 
intervals using a semiconductor gas sensor (MiCS-5524, SGX Sensortech, Neuchatel, 
Switzerland) via an Arduino Uno. The results indicated that the distribution of the odor plume 
was shifted by approximately −50 cm from the midline [Fig. 7(b), y-axis]. 

4.3	 Searching algorithm

	 The robot was designed to track an odor plume based on an arbitrary searching algorithm 
triggered by the presence of the odor estimated by a classifier [Fig. 1(b)]. We employed two 
reactive algorithms, the spiral surge(41) and hex-path(42) algorithms, owing to their simplicity of 
implementation in the robot (Fig. 8) among the various odor searching algorithms proposed 
previously.(4) The spiral surge algorithm is for a turbulent odor flow, whereas the hex-path 
algorithm is used to search for an odor under the ground, where diffusion is the dominant form 
of odor distribution.
	 In the spiral surge algorithm, a surge occurs when there is an odor (moving straight) and a 
spiral occurs when there is no odor (following an Archimedean spiral). In this study, the forward 
velocity during a surge was set as 10 cm/s. The forward velocity vs(t) and angular velocity ωs(t) 
during a spiral were defined as

	
0

_( ) ( )
/ 2

( )
t

s s s
SPIRAL WIDTHv t t u duω ω

π
= ∫ ,	 (8)

Fig. 8.	 (Color online) Trajectories of the robot implemented with the (a) spiral surge and (b) hex-path algorithms. 
The fastest, median, and slowest trials among successful trials are shown. The segmented trajectories shown in red 
and blue indicate when the sensor predicts the presence and absence of the odor, respectively. 

(a)

(b)
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	 ( )( ) max 0.3, 0.8 0.05 ,s t tω = − 	 (9)

where SPIRAL_WIDTH is the spiral width, which was fixed at 50 cm. If the robot did not detect 
an odor more than 20 s after the previous detection, then vs(t), ωs(t), and the gyration radius were 
not updated and remained constant. The direction of the spiral was determined randomly.
	 In the hex-path algorithm, a robot moves along the outline of a single hexagon in the same 
direction (clockwise or counterclockwise) if the odor concentration decreases and switches the 
direction of rotation at the vertices if the concentration increases. As the output of the behavior-
based odor sensor was binary, the frequency of odor detection during the forward movement on 
each side of a hexagon was used instead of the increase/decrease in odor concentration. The 
forward velocity, the length of a single side, and the angular velocity at a vertex were set as 
18 cm/s, 20 cm, and 1.0 rad/s, respectively.
	 Before performing the robot experiment with the behavior-based odor sensor, we conducted 
odor searching experiments by employing the robot with a gas sensor in an ethanol plume. The 
robot in which these algorithms were implemented localized the odor source in all trials (five 
trials for each algorithm, data not shown).

4.4	 Results

	 The results of odor source localization for all trials and the corresponding classification 
metrics are shown in Table 1. There were no significant differences between the classification 
metrics for the spiral surge and hex-path algorithms, except for F1 score (spiral surge, 
0.866 ± 0.024; hex-path, 0.832 ± 0.049; P < 0.05, t-test). Figure 8 shows the fastest, median, and 
slowest trajectories in which the robot localized the odor source. The robot moved in a wide 
range when it was far from the odor source. The robot finally reached the odor source by 
following a similar path in both algorithms, i.e., it moved in a straight line from the left of the 
odor source. The robot with the spiral surge algorithm localized the odor source in 11 out of 12 
trials (success rate, 92%), whereas the robot with the hex-path algorithm localized it in 6 out of 
12 trials (50%). The robot moved out of the area in all failed trials. The time and travel distance 
required for localization for the spiral surge algorithm were longer than those for the hex-path 
algorithm [spiral surge, 128 s (110, 199) and 13.0 m (9.6, 16.9); hex-path, 62 s (38, 76) and 4.9 m 
(4.2, 6.2); median (interquartile range)], and there were significant differences between the 
values (time, P < 0.01; travel distance, P < 0.05; Mann–Whitney U test at a significance level of 
P < 0.05). 
	 We compared the classification metrics between successful and failed trials for the hex-path 
algorithm (Fig. 9; we did not compare these metrics for the spiral surge algorithm because only 
one trial failed) to investigate the relationship between the performance of the classifier and the 
success rate of localization. Although there were no significant differences between the metrics 
for successful and failed trials (P > 0.05, t-test), Recall and Specificity showed different 
tendencies. Recall for successful trials was higher than that for failed trials (successful, 
0.913 ± 0.69; failed, 0.880 ± 0.039), whereas Specificity for successful trials was lower than that 
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for failed trials (successful, 0.703 ± 0.079; failed, 0.771 ± 0.061). A similar tendency was 
observed in Recall and Specificity for the spiral surge algorithm, even though only one trial 
failed in this case.
	 The odor detection probability in each 50/3 × 50/3 cm2 mesh was calculated to investigate 
whether the behavior-based odor sensor captured the plume structure [Figs. 10(a) and 10(b)]. The 
odor detection probability was calculated by dividing the number of odor detections by the 
number of predictions in each mesh. The detection probability is 1 if the classifier always 
predicts odor presence in a mesh and 0 if the classifier always predicts odor absence. The 
detection probability was high on the leeward left side of the odor source for all successful and 
failed trials for the two algorithms. The sensor rarely predicted odor presence when the odor 
source was removed [no odor, Figs. 10(a) and 10(b)]. The averaged detection probability for all 
trials [N = 24, Fig. 10(c)] showed that the plume structure shifted to the left; this result was 
similar to that obtained using the gas sensor [Fig. 7(b)]. The arrows in Fig. 10 indicate the mean 
vector of the robot’s direction in each mesh. A long arrow indicates that the robot is oriented in 
similar directions between trials. The arrows became longer and directed toward the odor source 
as the detection probability increased in successful trials. In a few meshes, there were long 
arrows and high detection probabilities away from the source. However, it is uncertain whether 
the high detection probabilities in these meshes are reproducible because the robot passed 
through these meshes in only one or two trials as shown in Fig. 10(d). 

5.	 Discussion

	 We developed an olfactory sensor based on the behavior of silkmoths and implemented it in a 
mobile robot for odor searching. The robot with the sensor successfully localized an odor source 
using artificial searching algorithms. Several previous studies have used the behaviors and flight 
muscle activities of silkmoths to classify behaviors and estimate odor acceptance using machine 

Fig. 9.	 Comparison of classification metrics between successful and failed trials of the (a) spiral surge and (b) hex-
path algorithms. The means and standard deviations are shown.

(a) (b)
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learning.(34–36) High classifier performance is preferable; however, it is not clear whether the 
performance achieved in previous studies is sufficient for the odor searching task. In this study, 
the classifier performance was characterized by classification metrics. Even though the classifier 
performance did not exceed that obtained in previous studies, it was sufficient for the mobile 
robot to locate the odor source. Further improvement of classifiers by adding other behavioral 
parameters such as wingbeat patterns and body and antennal movements(33) will increase the 
classification performance to close to that of silkmoths. The direct use of insect odor sensing has 
three advantages: high sensitivity, fast response, and high selectivity. Recent studies have shown 
that some types of semiconductor gas sensors exhibit fast responses comparable to insect EAGs 
(2−5 Hz).(43,44) Furthermore, a mobile robot equipped with localized surface plasmon resonance 
gas sensors resolved the temporal fluctuation of chemical signals at more than 25 Hz and tracked 
odors.(45) Therefore, the advantage of high response speed in insect olfaction may be diminished 
relative to the response speed of recent artificial chemical sensors. On the other hand, high 
sensitivity and high selectivity are still advantages of insect-based biosensors. The EAG-based 
mobile robot was the first such mobile robot to be developed.(21) More recently, a mobile robot 
equipped with a chemical sensor based on a mosquito’s olfactory receptors has been reported.(46) 
Our behavior-based sensor is a new direction in the use of insect olfaction for mobile robots. 
Here, we discuss the features of our system, the relationship between the classification metrics 

Fig. 10.	 (Color online) Probability map of odor detection. (a, b) Detection probability in successful trials, failed 
trials, and trials without the odor plume for the (a) spiral surge and (b) hex-path algorithms. The meshes without 
color are those that the robot does not pass through. The direction and length of the arrows indicate the mean vector 
of the robot direction in each mesh. (c) Detection probability for all trials under the odor plume (24 trials). (d) 
Distribution of the number of trials in which the robot passes through each mesh (max: 24 trials).

(a)

(b)

(c)

(d)
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and performance of odor source localization, and the perspective of odor detection devices based 
on insect behavior.
	 The difference between individuals is a major issue in sensors that use biological 
systems.(29,30) In the case of behavior classification using machine learning, there is an evident 
difference between the classifier performance characteristics among individuals.(34–36) 
Therefore, the establishment of the classifier by individuals before the odor searching experiment 
is preferable, and it is necessary to simplify the establishment procedure for practical use for 
odor searching. In our system, the same robot platform was used to establish the classifier and 
perform the odor searching experiment. After a silkmoth was tethered and placed on the 
spherical treadmill, only 5 min was required to acquire the training data and establish a classifier 
for each individual. Then, the robot performed the odor searching task. Therefore, our system 
and the procedure used to establish a classifier increase the practicality of behavior-based 
olfactory sensors.
	 The previous studies that used insect behavior as an olfactory sensor were only for chemical 
detection.(27,29–31,47) We demonstrated that behavior-based odor detection can be combined with 
robotic odor searching using arbitrary searching algorithms. The algorithms employed in this 
study were reactive strategies. The robots implemented in reactive strategies need to respond to 
an instantaneous odor input and execute preprogrammed behavior patterns. Therefore, the 
olfactory sensors require high response speed with short latency. The sampling frequency of 50 
Hz used for obtaining locomotion data was sufficient to capture the silkmoth behavior.(43) The 
estimated time delay, excluding the time required for sensory-motor processing in the silkmoths, 
was 1 s, i.e., 300 ms for odor delivery, 300 ms for the window width of the moving average, and 
400 ms for the feature extraction [see Eq. (3)]. The time delay of 1 s might be problematic 
because the studies on silkmoth-driven odor-searching robots have revealed that the odor 
searching performance decreases as the time delay becomes longer than 400 ms.(48) However, 
this occurs if the searching algorithm of actual silkmoths is employed. In contrast to the 
silkmoth-driven robot, the robot in this study is driven by arbitrary searching algorithms and the 
parameters can be modified. Therefore, it is possible to optimize the parameters such as the 
translational and angular velocities of the algorithms to maximize the odor searching 
performance even with a time delay of 1 s. Furthermore, we can select the algorithms on the 
basis of odor environments. This study used the spiral surge and hex-path searching algorithms. 
Different success rates were obtained using the two algorithms (92% for spiral surge and 50% 
for hex-path). However, the difference was acceptable considering the turbulent odor 
environment in the area. If the robot with the hex-path algorithm loses the odor plume, it 
becomes difficult for the robot to re-enter the plume because the search area is hexagonal in the 
absence of the odor. In contrast, if the robot searches within the plume and continuously detects 
the odor, e.g., when diffusion is dominant, a linear path can be selected to rapidly locate the odor 
source, such as in the case of the fastest trial shown in Fig. 8(b). 
	 The classifier performance obtained in this study was sufficient for performing odor 
searching using the spiral surge algorithm, although Precision was not particularly high (0.574). 
The low Precision was due to the relatively high false-positive rate, i.e., silkmoths performed a 
surge in the absence of the odor. One of the reasons for this could be a prolonged surge after odor 
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reception, which has been reported to be advantageous for insects performing an upwind surge 
outside a plume.(49,50) The high success rate of the spiral surge algorithm irrespective of the 
relatively low Precision is related to the odor environment. The robot frequently spiraled away 
from the odor source. In this case, a false positive leads to a spontaneous surge and shifts the 
center of the spiral. This expands the search area and may increase the probability of receiving 
odor. This does not mean that low Precision is better because such spontaneous factors can be 
implemented in the algorithm if a sensor with high Precision is employed. Therefore, the 
characteristics of the olfactory sensor and the search algorithm are complementary, and low 
classification metrics do not necessarily reduce odor searching performance. 
	 We did not find significant differences between the classification metrics for successful and 
failed trials in the experiments with the hex-path algorithm, in which the success rate was 50%. 
Therefore, the success rate might depend on whether or not the robot is continuously in the odor 
plume, rather than the difference between the classification metrics. There were relatively 
notable differences between Recall and Specificity, although the differences were not significant. 
The mean Recall of successful trials was higher than that of failed trials. This indicates that the 
success rate will increase if we select classifiers with higher Recall (all three trials with Recall 
above 0.95 were localized). In contrast, the mean Specificity of successful trials was lower than 
that of failed trials. This might be due to the same reason as that discussed above. In the future, 
the relationship between the classifier performance and the odor searching capability will be 
quantified by performing experiments using classifiers with different ranges of these metrics.
	 In this study, we used silkmoths and the robot searched only for the conspecific sex 
pheromone. Recently, an insect-based biorobot that can identify target chemicals based on 
multiple neural signals from the locust brain has been reported.(51) Although silkmoths exhibit 
the searching behavior only for bombykol, recent progress in genetic tools has enabled the 
generation of transgenic silkmoths, which express other types of olfactory receptors on 
pheromone receptor cells.(52) These silkmoths can innately respond to odors and localize odor 
sources as if they are receiving bombykol. The application of these silkmoths to our robot can 
enable the robot to detect a specified odor and localize a source.

6.	 Conclusions

	 We developed an odor-searching mobile robot with an insect-behavior-based olfactory sensor. 
An SVM-based behavior classifier predicted the presence and absence of the odor on the basis of 
the locomotor activity of an onboard silkmoth. Two artificial reactive searching algorithms were 
employed to drive the robot using the classifier output. The classifier performance was 
comparable to that of previous studies, and we found that the sensor performance was sufficient 
for the robot to locate an odor source using the conventional spiral surge algorithm. We also 
developed a procedure to quickly create a classifier for each individual on the mobile robot, 
which increased the practicality of the behavior-based sensor. Further development of genetic 
manipulation of olfactory receptors in silkmoths will increase the selectivity of the sensor and 
enhance the performance of searching for specific odors in a real environment. 
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