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	 Following the cassava leaf disease classification process, we successfully design a novel 
convolutional neural network (CNN) framework called EfficientNet using low-bandwidth image 
sensors and a combination of image enhancement and image classification methods. For this 
study, we have employed low-bandwidth, small-scale IoT image sensors in a farm to capture 
images of cassava leaves at periodic intervals. We employ data enhancement techniques such as 
test-time augmentation (TTA) and cutmix, cutout, and k-fold to accurately classify and evaluate 
the pathology of cassava plants. We carry out multiple simulated experiments to classify and 
evaluate diseases found in five cassava leaf datasets. Our framework is capable of producing 
relatively accurate classification results despite small differences between the test set images, 
and we achieved a classification accuracy for our final test set of 89%, comparable with that in 
similar studies. Experimental results obtained using a sensor show that EfficientNet significantly 
outperforms a state-of-the-art cassava leaf disease classification model.

1.	 Introduction
	
	 Cassava is a common plant in southern Africa and is the second largest source of food 
carbohydrates produced in small-scale farming. More than 80% of family farms grow the 
cassava crop, making it one of the major staple foods in the tropics. Cassava is subject to a few 
common viral diseases that cause the crop to develop toxins that may cause serious harm or 
death when consumed. Computer vision techniques can visually identify common viral diseases 
using sensors and allow farmers to precisely treat certain diseases and increase yields. It is 
difficult to detect virus-infested cassava through visual inspection through human eyes, and 
doing so often results in low accuracy rates and a high labor cost. A sensor-based crop inspection 
system for developing countries must be designed under the constraint of footage from low-
bandwidth cameras as developing countries have low access and/or no need for high-definition/



4032	 Sensors and Materials, Vol. 33, No. 11 (2021)

high-bandwidth cameras for farming. A low-bandwidth camera sensor is a type of low-energy 
CMOS sensor with reasonably low power consumption that follows low-bandwidth sensor 
network IEEE 802.1 protocols, and IoT image sensors are employed in various locations around 
a greenhouse farm to capture images of cassava leaves.
	 A computer’s interpretation of an image is through pixel information, which is different from 
a human’s interpretation of an image through the human visual system. Detection via 
computerized interpretation works by transforming an image to pixels, which have information 
and can be input to a computer in a specific way, such as a vector, then processed in parallel or 
series. Utilizing pixel-by-pixel information with mathematical operations such as convolution 
can produce a computerized abstraction that produces unique ‘features’. These features are then 
categorized into bins that are useful for performing a task. In industry and academia, there are 
five types of image classification: (1) image classification based on the simultaneous 
interpretation of different sensor information; (2) image classification based on the properties of 
training samples; (3) image classification based on various parameters used in data; (4) image 
classification based on certain properties of pixels; and (5) image classification based on spatial 
information.
	 Object detection determines the position of a target object in an image, whereas target 
detection is the identification of a target object in an image of any natural scene. Target detection 
is divided into three stages: image region selection, feature extraction, and image classification.
	 It is important to also understand edge extraction technology for computer vision as it is 
important for our enhancement methodology. In computer vision, an object’s edge contains a  
signal mutation, an irregular structure, and instability. Thus, objects in an image can be 
interpreted via a signal that exists in an object’s contour. By determining the position of an 
image edge and its signal, we can obtain a sample that can be used for image recognition. 
Performing signal processing and edge detection well can (1) improve image quality; (2) provide 
information for the separation of targets; (3) provide information on a scene; (4) provide 
information for further feature recognition. Edge extraction technology has made rapid progress, 
increasing the accuracy of classification.
	 The dataset used in our study consists of more than 20000 photos of cassava plants, which 
were captured in Uganda. These cassava plants were identified and classified into four disease 
types and healthy plants by the National Crop Resources Institute. We posit that, with the help of 
EfficientNet, farmers can quickly identify the type of disease and treat the cassava plant more 
effectively.
	 In this study, we designed a convolutional neural network (CNN) framework called 
EfficientNet to classify cassava leaf diseases with high accuracy. We briefly introduce CNNs in 
Sect. 2, as well as give a short introduction to pooling and fully connected layers. In Sect. 3, we 
discuss related works in cassava leaf disease detection. Section 4 shows the structure and 
principle of data enhancement and label smoothing in detail. In Sect. 5, we describe the principle 
and hierarchical structure of EfficientNet in detail. In Sect. 6, we describe our results through 
experiments, in which we discuss the k-fold and test-time augmentation (TTA) strategies for test 
set training, and our process for verifying the accuracy of our method. We conclude our study in 
Sect. 7.
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2.	 Convolutional Neural Networks

	 CNNs are widely used in image classification, knowledge mapping, recommendation 
systems, target detection, target recognition, image recognition, speech recognition, and other 
fields. After Hubel and Wiesel explored the cat’s visual nerve, they proposed the concept of a 
receptive field(1) and further discovered that there is an association between the visual cortex of 
the brain and the processing and classification of external input. They explained the concept of 
the sensory field; visual input spaces and cells contribute to the whole visual cortex and can be 
mimicked to realize accurate computer vision techniques. CNNs(2) are then created from these 
concepts and can be divided into three parts. The first part is the image input layer, the second 
part is the convolutional and pooling layers for feature extraction, and the third part is a joining 
layer, which decomposes and merges image features into a column vector.

2.1	 Convolutional layer

	 A convolutional layer(3) has an optimized backpropagation solution, and together these form a 
convolution unit. A convolution layer comprises multiple convolutional units. A convolution 
operation determines low-level features of an image, such as edges, lines, and faces. With each 
additional convolution layer, a network can extract more complex features from low-level 
features. The recognition of objects is essentially performed by mathematical reasoning and 
abstraction from the features of points and edges. For example, in the first layer, the information 
regarding points and edges is extracted from pixels and used as the input for the next layer. In the 
second layer, rectangles, ellipses, and other information are recognized from the points and 
edges, and used as the input for the next layer, and so forth. This process occurs until a level of 
mathematical abstraction that is sufficient for the relevant matching task is obtained. Because 
many features can be extracted, one can adjust the number of convolutions and features to 
extract according to the desired purpose. Figure 1 shows the convolution process for two 
matrices, where the pink matrix is the resulting matrix.
	 In Fig. 1, the size of the input picture is 5 × 5. After convolution with the convolution core of 
size 3 × 3, the original input space is mapped to a 3 × 3 area. Here, the convolution operation 
extracts the features of the input image, so that every pixel in the image can be learned in this 
way.

Fig. 1.	 (Color online) Convolution process for CNNs.
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2.2	 Pooling layer

	 We obtain abstract features through the preset convolution layer, which are prone to 
overfitting.(4) Therefore, it is necessary to reduce the dimension of features by downsampling in 
the pooling layer. The maximum or average pooling method is used to obtain the maximum or 
average value in a fixed area to reduce the dimension of features. This method can not only 
preserve image features but also prevent overfitting. The maximum pooling process is shown in 
Fig. 2.

2.3	 Fully connected layer

	 The function of the fully connected layer is to connect all the features in the form of column 
vectors from the 2D feature map output by the front layer. The output value is sent to the 
classifier, and the process is shown in Fig. 3.
	 The convolution and pooling layers map the original data to a feature space, which means 
that the accuracy of the feature matrix and the abstraction of the original data are increased. To 
input this information into a classifier, we convert the feature space into a column vector, and the 
next layer maps the convolution and pooling layer outputs to a linear separable space. The fully 
connected layer can obtain high-order features from the convolution and pooling operations, 
simplify the parameter model, and reduce the numbers of neurons and training parameters.(4)

3.	 Related Works on Cassava Leaf Disease Detection 

3.1	 Deep models for cassava leaf disease detection

	 According to our comprehensive survey on cassava leaf disease detection methods using 
image processing and artificial intelligence, current methodologies use techniques such as 
artificial intelligence, IoT, algorithms based on rules, machine learning regression techniques, 
image processing, transfer learning, hyperspectral imagery, leaf extraction, and segmentation.(5) 
	 There exist deep learning models that require substantial computational resources and 
significant postprocessing time to obtain high recognition rates. Studies have been reported on 

Fig. 2.	 (Color online) Maximum pooling process. Fig. 3.	 Fully connected layer.
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pest damage recognition utilizing deep transfer learning (93% classification accuracy rate),(6) the 
resolution of class imbalances using a synthetic minority oversampling technique for 
underrepresented classes,(7) and a deep learning model with no augmentation processes (85% 
accuracy rate).(8) Other related studies include those on deep residual CNNs with distinct block 
processing(9) and the real-time embedded system MobileNetV2 deep learning model (65.6% 
accuracy rate).(10) Preliminary cassava leaf disease detection was performed with a cubic support 
vector machine (SVM) model and a coarse Gaussian SVM, which yielded accuracies of 83.9 and 
61.6%, respectively.(11)

3.2	 Lightweight models for cassava leaf disease detection

	 Lightweight models, similar to our framework, which are more practical for developing 
countries, include a mobile implementation using a single-shot detector called MobileNet to 
identify foliar symptoms of cassava leaf diseases(12) and a recognition model using low-quality 
images that are augmented with enhanced data techniques.(13)

	 The mobile implementation(12) requires sufficient training examples from diverse data 
sources to improve its detection accuracy and better capture the diversity of cassava leaf diseases 
that occur in the real world. The methodology using low-quality images(13) attempts to solve the 
recognition problem by using a novel image color histogram transformation technique to 
generate synthetic images, which is based on the convolution of Chebyshev orthogonal functions 
with the probability distribution functions of image color histograms. Our method is similar in 
that we use color transformations for normalization but do not rely on color histograms.

4.	 Preprocessing of Training Data

4.1	 Applied data enhancement techniques

	 Data enhancement technology refers to reusing and learning each image through processing 
without increasing the number of images in the expanded dataset.(14) In our study, we employed 
key data enhancement techniques to achieve an effect similar to that of increasing the number of 
images in the expanded dataset. A geometric transformation of the image is carried out as shown 
in Fig. 4. As shown in Fig. 5, we applied a color transformation to the image.(15)

4.2	 Label smoothing

	 In this paper, we utilize label smoothing, which is a regularization method(16) that improves 
generalization and model calibration. Smoothing the labels prevents the network from being 
overconfident and overfitting results after training. In the loss function, where the model applies 
the softmax function to the penultimate layer’s logit vectors to compute its output probabilities, 
the gradient is bounded between 0 and 1. These boundaries are too far apart and we adjusted 
them to 0.3 and 0.7, so that gradient descent and smoothed labels will compute better probabilities 
with small logit gaps. Doing so will partly address the problem of poor generalization.
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	 In the classification problem, there are generally two values of tags in the training data, 0 and 
1, where 0 represents a certain category and 1 represents the opposite category. Thus, in 
traditional one-hot coding, the label vector yi is
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i target
y

i target
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=  ≠
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	 When the model is deployed for training, its minimum loss function is
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Fig. 4.	 (Color online) Geometric transformation of the image.

Fig. 5.	 (Color online) Color transformation.
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where parameters pi correspond to the output logic vector z of the penultimate layer in the model, 
which can be calculated by the softmax function
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	 For the past models, the aim was for the target tag value predicted at the end to be close to 1 
and the non-target tag value to be close to 0. However, if the logic vector is too large, the network 
will be overfitted and the generalization ability will be poor. Therefore, the cross-entropy 
function is not necessarily the best choice as the objective function.
	 Label smoothing combines a uniform distribution with updated label vectors,i.e.,

	 ( )1 / ,ˆi hoty y a a k= − + 	 (4)

where k is the total number of categories and a is a small superparameter (usually 0.1), 
determined as
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	 Label smoothing can be understood as adding interference noise to the label distribution of 
the original real dataset. In this way, the overfitting of the model for labels can be avoided and 
the difference between labels is not too large, which also improves the generalization ability. 
Cassava leaf classification can benefit from label smoothing as it changes the representations 
learned by the penultimate layer of the network by encouraging the representations of training 
examples from the same class to group in tight clusters.

4.3	 Mixup, cutout, and cutmix

	 For our study, we also applied three preprocessing methods to the data to improve the 
accuracy of our results. Cassava leaves captured by low-resolution sensors are often subject to 
noise and environmental interference, and by utilizing simple preprocessing methods, we 
improve the model accuracy without adding additional data. The three methods are mixup, 
cutout, and cutmix. 
Mixup:	 Mix any two samples according to the desired proportion. The results of the 

classification are distributed according to the proportion.
Cutout:	 Arbitrarily delete part of the region in the sample and fill the region with a pixel value 

of 0. The result of classification remains unchanged.
Cutmix:	 Delete part of an image and randomly fill the part with nonzero pixel values, which 

are allocated according to a certain proportion. These functions are illustrated in Fig. 
6.
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5.	 EfficientNet Algorithm

5.1	 Convolutional neural network model

	 The depth and width of the model network and the resolution of the input image correspond 
to the number of layers, the channel size, and the input tensor size in each stage, respectively. 
Because the network depth and width and the resolution are adjusted continuously, the accuracy 
of the model tends to be stable. The general framework of the EfficientNet model is shown in 
Fig. 7.
	 As each image in the dataset passes through the neural network, it obtains a feature map, 
similarly to that in encoding, as shown in Fig. 8. Each dimension vector of the feature map can 
be understood as the feature vector corresponding to part of the original image, namely, a local 
feature. Finally, the features in the decoding part are input to the fully connected layer then 
classified by softmax. The principle of the EfficientNet model is shown in Fig. 9.
	 The EfficientNet network layer size and channel number are shown in Table 1. Through the 
coefficients h, W, and R, EfficientNet can be extended to other EfficientNet networks, as shown 
in Table 2.

5.2	 Depthwise separable convolution

	 The depth can be separated by convolution shown in Fig. 10, which can reduce the number of 
convolution parameters. The parameter quantity shown in Fig. 11 is 3 × 3 × 10 × 4, that is, 360 
parameters are required. EfficientNet has seven stages, each of which has the same structure but 
different superparameters.
	 The number of parameters required is 3 × 3 × 10 + 1 × 1 × 10 × 6 = 150. After processing by 
a single 1 × 1 convolution kernel, the features of these channels can be combined linearly, so that 
the features are related to each other. A diagram of depthwise separable convolution is shown in 
Fig. 11.

 Fig. 6.	 (Color online) Illustration of the mixup, cutout, and cutmix functions.
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Table 1 
Size and number of channels of each network layer of EfficientNet.
Stage Operator Resolution Channels Layers
1 Conv3 × 3 224 × 224 32 1
2 MBConVt k3 × 3 112 × 112 16 1
3 MBConV6, k3 × 3 112 × 112 24 2
4 MBConV6, k5 × 5 56 × 56 40 2
5 MBCOnV6, k3 × 3 28 × 28 80 3
6 MBeOnV6, k5 × 5 14 × 14 112 3
7 MBConV6, k5 × 5 14 × 14 192 4
8 MBConV6t k3 × 3 7 × 7 320 1
9 ConVIXI & PooIing & FC 7 × 7 1280 1

Fig. 7.	 (Color online) Framework of EfficientNet model.

Fig. 8.	 (Color online) Schematic diagram of encoding principle.

Fig. 9.	 (Color online) Schematic of EfficientNet principle.
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6.	 Experiment and Analysis

6.1	 Setting experimental parameters for k-fold and TTA

	 There are four functions of data enhancement. The first is to avoid overfitting. When a 
dataset has some special feature preferences, such as the pictures in the dataset are taken from 
the same natural scene, data enhancement methods such as cutout and cutmix are used to 
prevent the model from learning information unrelated to the target. The second is to improve 
the robustness of the model and reduce its sensitivity to the data. When the training data 
encounters special situations, such as occlusion, brightness, and fuzziness, it is easy to identify 
errors. The model data can be improved by adding noise and concealment. The third is to 
increase the amount of training data and improve the generalization ability of the model. The 
fourth is to avoid sample imbalance. In industrial defect detection, there is often a large 
difference between the numbers of positive and negative samples. For example, in the training 
samples, the number of good samples is far greater than that of poor samples, which results in 
the network being more inclined to learn the characteristics of good samples than those of poor 
samples, reducing the effectiveness of the network. By using data enhancement and modification 
techniques, the information shown in the data can be enhanced.

6.2	 Evaluation of image classification accuracy

	 With k set to 5 in the k-fold method, the image set used for testing is separated from the image 
set used to train the model network parameters. The accuracy of the test results is acceptable. In 

Table 2 
Parameter values of different EfficientNet versions.

Width Depth Resolution
EfficientNet-b0 1.0 1.0 224
EfficientNet-b1 1.0 1.1 240
EfficientNet-b2 1.1 1.1 240
EfficientNet-b3 1.2 1.4 300
EfficientNet-b4 1.4 1.8 380
EfficientNet-b5 1.6 2.2 456
EfficientNet-b6 1.8 2.6 528
EfficientNet-b7 2.0 3.1 600

Fig. 10.	 (Color online) Diagram of ordinary 
convolution.

Fig. 11.	 (Color online) Diagram of depthwise 
separable convolution.
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the test, the TTA parameter is set to 3, that is, one test image is judged three times. The results 
for the first six batches are shown in Fig. 12 and the results for the last five batches are shown in 
Fig. 13. The results of the test set are shown in Fig. 14. In the 12 rounds of deep learning training, 
the loss rate of the verification set is as low as 0.27 and the correct rate is 89.73% in the final test 
set, which is not involved in the training.

6.3	 Experimental comparison

	 The datasets with and without data enhancement were trained and tested. The experimental 
results obtained using a low-bandwidth camera sensor are shown in Figs. 15 and 16. After five 

Fig. 13.	 (Color online) Results for the last five batches.

Fig. 12.	 (Color online) Results for the first six batches.

Fig. 14.	 (Color online) Test set results.
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training epochs, it can be seen that in the 10th batch of training, the loss is reduced to 0.26 in the 
training and 0.42 in the testing. However, in the 10th batch of training with data enhancement, 
the loss is reduced to 0.38 in the training and 0.35 in the testing. We can see that the training 
with data enhancement significantly reduces the loss compared with the training without data 
enhancement, and that data enhancement can reduce the image loss in testing. Without data 
enhancement training, the generalization ability is poor and the performance of the training set 
is overfitted.

7.	 Conclusion

	 We developed a Cassava leaf classification neural network called EfficientNet to classify 
diseases from images of cassava leaves. In our proposed classification process, we enhance a 
specific cassava leaf dataset, but our framework can theoretically be applied to other cassava leaf 
datasets in future work. We set up IoT image sensors at various locations in a greenhouse farm 
containing cassava leaves to capture closeup images of cassava leaves. We utilized data 
enhancement techniques to improve the generalization ability of the network and provide higher 
recognition rates for cassava leaves in natural scenes. However, performance characteristics may 
differ according to environmental conditions, such as natural light and fog (which can cause 
colors in the image to be imbalanced), or the camera capability. When images captured by a 
camera are used, the details of leaves cannot be seen because of the low resolution of the images; 

Fig. 16.	 (Color online) Training results of the last five batches after data enhancement training.

Fig. 15.	 (Color online) Training results of the last five batches without data enhancement training.
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therefore, it is important to employ novel postprocessing techniques for images taken in natural 
scenes.
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