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 High-resolution unmanned aerial vehicle (UAV) multi-spectral sensor images can provide 
valuable information for mapping forest areas that have recently been burned. In this study, we 
investigate the use of multi-spectral images captured with a UAV to evaluate burn severity in 
areas affected by forest fires in Gumi-si, South Korea. Fire classification was performed using 
two supervised learning algorithms, maximum likelihood (ML) and spectral angle mapper 
(SAM). Three spectral indices, namely, normalized difference vegetation index (NDVI), 
RedEdge NDVI (RE-NDVI), and the visible-band difference vegetation index (VDVI), were 
used to create burn severity thresholds in ML and SAM classifiers. The classification results 
indicated that ML has higher overall accuracy (80–89%, Kappa coefficient = 0.8) than SAM 
(44–52%, Kappa coefficients ~0.27) in identifying fire severity classes. The ML classifier 
showed higher accuracy for both unburned and crown fire classes, whereas the SAM classifier 
exhibited moderate accuracy for all classes. Most of the misclassification was identified between 
the unburned area and the low heat-damaged area. This research revealed that distinguishing 
between the unburned area and low heat-damaged area is the most challenging task in fire 
severity classification. Also, further investigation is required to improve the accuracy of fire 
severity classification from multi-spectral images.

1. Introduction

 Globally, catastrophic forest fires are on the rise and have become an important issue in many 
countries. For example, Australia recorded historical severe uncontrolled fires from June 2019 to 
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March 2020. The fires burned an estimated 18.6 million hectares and destroyed over 56,900 
buildings and houses.(1) Wildfires in the western United States have greatly increased in number 
and size over the past three decades due to warmer weather, high wind speeds, fuel accumulation,  
and lightning.(2,3) In South Korea, from 2004 to 2018, there were 6,588 forest fires with a total 
burned area estimated at around 11,065 ha and an economic loss estimated at 252 million USD.(4) 
Most forest fires have human causes, including smoking, recreation, and illegal burning in 
suburban regions in South Korea. Additionally, fanned by strong winds, fires spread to the 
mountains in the eastern coastal area of South Korea.(5)

 The frequency, size, and severity of wildfires have increased over the past few decades as a 
consequence of climate change and human activities,(6) with approximately one billion animals 
and birds killed and some endangered species exposed to the risk of extinction in New South 
Wales, Australia.(1) Forest fires can have other indirect consequences, including landslides and 
soil erosion. For instance, it has been confirmed that the water infiltration capacity of soil 
declines after a forest fire,(7–9) which results in increased runoff and surface erosion.(7,10–13) To 
reduce these consequences of forest fires, it is necessary that strategic plans are developed to 
investigate burned areas and the severity of damage so that efficient recovery plans can be 
implemented in damaged and burned areas. Additionally, precise estimates of fire damage levels 
also provide valuable information for efficient restoration planning after a fire.(14,15) Furthermore, 
foresters have developed algorithms to estimate the mean return time, and precise burn severity 
maps are useful for predicting the recovery time and planning reforestation to facilitate best 
forest management practices. 
 In general, integrated field surveys and satellite imagery analysis are the preferred methods 
to analyze forest fire severity in large areas of burned forest.(16,17) However, several factors limit 
the use of field and satellite imagery methods, such as time consumption, labor cost, the cost of 
high-resolution images, and the low quality of contaminated images due to meteorological 
factors such as clouds and rain. To overcome these issues, unmanned aerial vehicles (UAVs) 
equipped with high-resolution sensors have been proposed as an alternative to satellite images 
for different applications in the forestry sector, including fire severity assessment.(4,18,19) 
 Previous forest fire severity research has been performed using satellite or airborne multi-
spectral imagery. Most of this research investigated burn severity by comparing pre- and post-
forest-fire spectral indices, such as the normalized difference vegetation index (NDVI) and the 
normalized burn ratio (NBR).(20–25) Additionally, most of the fire severity studies combined 
NBR and the burned area index (BAI) since shortwave infrared bands have the potential to 
detect forest fire damage.(26–28) According to Keeley, fire severity is defined as the impact of a 
fire on ecosystems, such as tree mortality or loss of diversity.(29) Rozario et al. developed a 
method of site-specific burn severity modeling using remote sensing techniques to develop 
severity patterns on vegetation and soil in a fire-prone region of Palo Verde National Park in 
Guanacaste, Costa Rica.(30) They examined physical terrain features, soil cover, and scorched 
vegetation characteristics to develop a fire risk model and quantify probably burned areas.(30) In 
forestry, fire severity is generally evaluated on the basis of the degree of tree mortality, canopy 
loss, or bole and crown scorch.(29) In the United States, the Forest Service (USFS) has categorized 
fire severity into five classes (extreme, high, moderate, low, and unburned) on the basis of a 
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composite burn index.(31–33) These studies also revealed the current limitations in identifying or 
classifying fire severity using low-resolution satellite imagery data.(4)

 In this context, we investigate the opportunities for using multi-spectral UAV images to 
assess fire severity. The spectral angle mapper (SAM) and maximum likelihood (ML) 
classification techniques are used to assess fire severity, and the analysis includes an accuracy 
comparison between the two methods. The paper also highlights which methods and aspects are 
worth investigating to improve the application of multi-spectral images for fire severity 
assessment. It is anticipated that the insights obtained from the approaches presented in this 
paper will contribute to increased understanding of the technical aspects and potential benefits 
of UAV sensor technology for fire severity assessment.

2. Materials and Methods

2.1 Study sites

 The study was conducted on April 1–5, 2019, within the perimeter of a large wildfire that 
occurred in Gumi-si, located in Goa-eup in South Korea on March 28, 2019, which caused a total 
estimated fire-damaged area of 176.6 ha. The climate of Gumi-si is dry and windy during winter 
and spring, and Korean red pine (Pinus densiflora) and Japanese larch (Larix kaempferi) are the 
predominant species in this region. The satellite image in Fig. 1 shows the total fire-damaged 
area one day after the forest fire occurred. This image was captured by the Sentinel-2A imaging 
satellite, which is operated by the European Space Agency (ESA). The sensor can capture 
images with a spatial resolution of 10 m and 13 bands (coastal aerosol, blue, green, red, 
vegetation RedEdge, near-infrared, short-wave infrared, etc.). The study area in which images 
were collected with the UAV (190.4 ha) is marked in red in Fig. 1.

Fig. 1. (Color online) Study area in which satellite images were collected after forest fire (Gumi-si, Goa-eup, 
South Korea) and satellite image.
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2.2 Data collection

2.2.1	 UAV	machine	specifications	and	imaging	system	description

 A NIFoS-2 UAV equipped with a RedEdge camera (Micasense, Seattle, WA, USA) was used 
to acquire the multi-spectral images. The images were acquired on May 11, 2019, more than one 
month after the forest fire. The acquired images consisted of 225 scenes with 70% overlap and 
70% sidelap. The RedEdge camera can collect images in five bands (blue, green, red, RedEdge, 
and near-infrared), which are considered appropriate for vegetation detection. The spatial 
resolution was set to 30 cm with a flying height of over 500 m above sea level. The images were 
then preprocessed and converted into a mosaicked reflectance image using Pix4D software 
(Pix4 S.A., Prilly, Switzerland). Figures 2(a) and 2(b) present the RedEdge multi-spectral UAV 
images of the burned areas in Gumi-si collected on May 11, 2019. The images were generated 
with a pseudo-infrared composite using the NIR band (RGB = bands 5, 3, 2). The UAV was a 
hexacopter, equipped with six rotor arms, which provide a stable flight and more lifting power. 
UAV specifications and dimensions are presented in Fig. 3(a). The maximum flight time, speed, 
and altitude were limited to 30 mins, 15 m/s, and 1000 m, respectively. 

2.2.2	 Definition	of	fire	severity

 Fire severity was determined by adopting the Korean composite burn index (KCBI) and the 
field survey results. According to the KCBI, fire severity is categorized into five levels: 
unburned, low, moderate, high, and extreme. There is a limitation in applying the KCBI for fire 
severity assessment due to an ambiguous definition between the moderate- and low-severity 
classes.(4) To avoid this problem, only four fire severity classes were used in this study 
(unburned, low heat-damaged, extreme heat-damaged, and crown fire), to reflect the significant 
characteristics of the damage degree. These four fire severity classes are defined as follows: 

(a) (b)

Fig. 2. (Color online) (a) Natural color composite: RGB = bands 3, 2, 1 and (b) pseudo-infrared composite: RGB = 
bands 5, 3, 2 of RedEdge multispectral images of the burned areas in Gumi-si.
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• Unburned: no presence of damaged areas or evidence of forest fire 
• Low heat-damaged: the presence of ash and soot on the ground surface
• Extreme heat-damaged: the presence of fallen yellow leaves due to heat damage
• Crown fire: evidence of crown fire (no leaves and trunks covered by soot)

2.2.3	 Field	survey

 Ground control points (GCPs) were collected during the field survey to represent different 
fire severity locations. The GCPs of the above four different burn severity classes were targeted 
to classify the fire severity. The location of sampling sites was determined using a random 
sampling method. To develop training data for classification and validate the fire severity 
results, ten locations in each fire severity class (determined by random sampling) were visited, 
and their geographic coordinates recorded. The borderline between the burned and unburned 
areas was delineated on the basis of the images captured during the field survey (Fig. 4(a)).

2.3 Spectral analysis

 The overall schematic approach to analyze forest fire severity using UAV multi-spectral 
images is presented in Fig. 5. Mosaicked reference images captured by the UAV were merged 
and overlapped using Pix4D software. Integrated images were processed with atmospheric 
correction using ENVI® 5.3 and ArcGIS© 10.8.1 software. To investigate the spectral 
characteristics of each fire severity class, the mean and standard deviation of the NDVI, 

(a) (b)

Fig. 3. (Color online) Specifications of (a) NIFoS-2 and (b) RedEdge-M multi-spectral sensors.
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(a) (b) (c)

Fig. 4. (Color online) Development process of the training data: (a) Collection of geocoordinate data from 
locations with different levels of fire severity (unburned, low heat-damaged, extreme heat-damaged, and crown fire), 
(b) fire severity library developed from UAV and field survey geocoordinate data, and (c) reference map generated 
from the developed library and UAV images.

Fig. 5. Overall flowchart of forest fire severity analysis.
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RedEdge (RE) NDVI, and visible-band difference vegetation index (VDVI) were calculated 
using the multi-spectral UAV imagery. The vegetation indices are defined as
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where ρ is the mean reflectance of each band.
 A composite image was created using each spectral band and stacked UAV imagery (for 
example, the NDVI mean band and UAV image consist of six bands of a composite image). Next, 
the composite image was used to classify burn severity with the training data using the ML and 
SAM classification techniques. Finally, an accuracy assessment was conducted using statistical 
analysis, which included the error matrix, Cohen’s Kappa, and overall accuracy. A detailed 
description of the methodologies is provided in the following sections. 

2.3.1	 Reflectance	value	selection	

 Image reflectance spectra were used to assess the quality of training data (i.e., digitized and 
GCPs) for fire severity classes while applying the ML and SAM algorithms. Reflectance values 
were sourced from the ground truth data collected during the field survey. Four reflectance 
values were identified from the study area corresponding to the four fire severity classes. The 
spectral signatures of the burn severity classes are presented in Fig. 6. The reflectance pattern 

Fig. 6. (Color online) Spectral reflectance value selection for pixel-based classification.
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shows that crown fire had the highest reflectance in the blue, green, and red bands, while 
unburned areas had the highest reflectance value in the NIR and RedEdge bands. Additionally, 
compared with the low heat-damaged areas, the extreme heat-damaged areas had higher 
reflectance values except in the RedEdge band. 

2.3.2	 Training	and	testing	classifiers	from	UAV	image	samples

 Some samples from the set of collected UAV images were used to train and test the classifiers. 
To embrace all the reflectance values, sampling was conducted in such a way that enough pixels 
were included from all the defined fire severity classes (unburned area, low heat-damaged area, 
extreme heat-damaged area, and crown fire). Twenty-five plots were selected from each fire 
severity class from the field survey data and the visual classification at the study locations in 
Gumi-si. Each plot was 3 × 3 pixels in size. Table 1 presents the mean and standard deviation of 
the fire severity for three spectral indices, where mean values were estimated from training 
samples. NDVI shows more distinct values among the burn severity classes than RE NDVI and 
VDVI. Therefore, NDVI is useful in classifying burn severity since the index can easily define 
thresholds among classes.

2.4	 Classification	of	burn	severity

2.4.1	 Maximum	likelihood	algorithm

 The ML algorithm allocates a pixel to the class that has the highest probability under the 
assumption that the reflectance values of each class have a normal (Gaussian) distribution in the 
band.(4) The probability for the pixel is analyzed by the multivariate normal density function 
from the mean, variance, and covariance of training samples.(34) The equation used for ML 
classification is
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where n is the number of multi-spectral bands, X is the unknown measurement vector, Vi is the 
covariance matrix of each training class, and Mi is the mean vector of each training class.

Table 1 
Mean of fire severity for NDVI, RE NDVI, and VDVI vegetation indices.
Index Crown fire Extreme heat-damaged Low heat-damaged Equation
NDVI 0.238 ± 0.011 0.486 ± 0.024 0.753 ± 0.011 0.666 ± 0.015
RE NDVI 0.206 ± 0.010 0.330 ± 0.019 0.392 ± 0.022 0.373 ± 0.019
VDVI 0.004 ± 0.009 0.009 ± 0.016 0.203 ± 0.040 0.153 ± 0.016
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2.4.2	 Spectral	angle	mapper

 Fire severity was assessed from multi-spectral images collected in areas of Gumi-si damaged 
by fire. These areas were identified using a target detection analysis through spectral reflectance 
values. The spectral reflectance was derived from the UAV multi-spectral images, and each fire 
severity class was identified on the basis of the reflectance value and wavelength of the images 
(Fig. 6). In the SAM approach, the similarity values of the spectral angle between the reference 
spectrum and the image spectrum of each pixel were calculated. The SAM algorithm can be 
presented as a mathematical formula representing a pure impulse function between the image 
pixel and the reference reflectance spectrum as follows:(35)

 1
2 2
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( ) ( )
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X Y
α − ∑
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∑
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where α is the angle between the reference and captured image spectra, X is the UAV image 
spectrum, and Y is the reference image spectrum.

2.5 Accuracy assessment

 Fire severity accuracy was evaluated using an error matrix method that provided accuracy 
parameters including confusion matrices, user and producer accuracies, Kappa coefficient 
values, and overall accuracies for the target areas.(30) The total number of cells in each burn 
severity class was set out in a square array of rows and columns. The rows in the matrix 
represent the reference data (NDVI classified map), while the columns represent the allocated 
(mapped) classes. The maps of two classified vegetation indices (i.e., NDVI and RE NDVI) were 
aggregated using the Combine function in the Spatial Analyst extension of ArcMap 10.8.1. The 
attribute table of the resulting calculation was exported as a .dbf file.(36) Then the .dbf file was 
imported in Microsoft Excel, the confusion matrix was generated using the Pivot Table, and the 
Kappa coefficient value was obtained as follows:
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where K-hat is the coefficient of agreement, N is the total number of sites in the matrix, k is the 
number of rows in the matrix, xii is the number in row i and column i, x+i is the total for row i, 
and xi+ is the total for column i. 
 Usually, the accuracy is assessed by using an error matrix. In our study, the error matrix was 
developed by selecting a sample of pixels from polygons in the target images and obtaining the 
reference classification for each forest fire severity location, where the classified forest severity 
was defined as the best available assessment of the ground condition.(37) We assumed the pixel 
as the assessment unit, and the developed matrix provided the classification accuracy. Also, the 
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Fig. 8. (Color online) Identified fire severity using SAM method in Gumi-si: (a) NDVI, (b) RE NDVI, and (c) 
VDVI.

Kappa coefficient value was used to evaluate the viability of the classification compared with a 
random classification, subject to the observed marginal in the true classes.

3. Results 

3.1	 Identified	fire	severity	in	Gumi-si

 Fire severity maps were generated using the two classification methods with three vegetation 
index thresholding methods. Figures 7 and 8 present the classification results of ML and SAM 
using NDVI, RE NDVI, and VDVI, respectively. ML shows good classification results for 
overall classes; the estimated overall accuracies of the ML and SAM methods were 80–89% 
(Kappa coefficient = 0.8) and 44–52% (Kappa coefficient ~0.27), respectively. The accuracy 
results of the ML classification method are presented in Tables 2 and 3. Regarding the ML 

(a) (b) (c)

Fig. 7. (Color online) Identified fire severity using ML method in Gumi-si: (a) NDVI, (b) RE NDVI, and (c) VDVI.

(a) (b) (c)
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classification, the unburned and crown fire classes showed the highest accuracy (>80%) for both 
user and producer. Compared with the ML classification, the SAM classification resulted in 
lower overall accuracy (Tables 4 and 5), with the unburned and crown fire classes having the 
highest accuracy (Table 5). 
 Most of the misclassification occurred between the extreme heat-damaged area and the low 
heat-damaged area in both the ML and SAM methods. These results revealed that the 
classification and allocation of pixels to extreme heat-damaged and low heat-damaged areas are 
the most challenging tasks in fire severity assessment. The results also indicated that the use of 
multi-spectral imaging data is limited to discriminating between unburned and low heat-
damaged areas since the crown fire and extreme heat-damaged areas have very similar 
reflectance patterns and values based on multi-spectral images. To improve the accuracy of the 
classification method in the low heat-damaged area, it is necessary to factor in external elements 
such as under-canopy inventory and crown density, which can provide additional information to 
recognize the differences between unburned and low heat-damaged areas accurately.
 Regarding the SAM classification, the extreme heat-damaged area showed the highest 
accuracy level (80.56%) among the fire severity classes for NDVI and RE NDVI, whereas for 
NDVI and VDVI, the highest accuracy (100%) was estimated for both the extreme heat-damaged 
and crown fire classes (Table 5). However, most of the misclassification occurred for the low 
heat-damaged and crown fire classes when using NDVI and RE NDVI (Table 4). These results 
revealed that the classification and allocation of pixels to low heat-damaged and crown fire areas 
are the most challenging tasks when using NDVI and RE NDVI in fire severity assessment. 
NDVI and RE NDVI thresholding showed high accuracy for the extreme heat-damaged and 

Table 3
Confusion matrix of NDVI (Reference) and VDVI for classification accuracy assessment for ML (%) in Gumi-si.
Reference
Classifications Unburned Low heat-

damaged 
Extreme heat-

damaged Crown fire Producer 
accuracy

User 
accuracy

Unburned 92.46 3.37 0.12 0.94 92.46 98.13
Low heat-damaged 0.32 67.74 0.47 0.53 67.74 98.46
Extreme heat-damaged 7.14 28.89 99.41 15.17 98.41 62.10
Crown fire 0.08 0 0 83.36 83.36 98.19
Total 100.00 100.00 100.00 100.00 — —
Overall accuracy = 87.16%, Kappa coefficient = 0.80

Table 2 
Confusion matrix of NDVI (Reference) and RE NDVI for classification accuracy assessment for ML (%) in Gumi-
si.
Reference
Classifications Unburned Low heat-

damaged 
Extreme heat-

damaged Crown fire Producer 
accuracy

User 
accuracy

Unburned 90.31 3.81 0.41 0.04 90.31 98.41
Low heat-damaged 0.33 84.17 1.25 0 84.17 98.66
Extreme heat-damaged 9.36 12.02 98.33 0.46 98.33 35.39
Crown fire 0.00 0 0 99.50 99.5 99.95
Total 100.00 100.00 100.00 100.00 — —
Overall accuracy = 89.42%, Kappa coefficient = 0.80
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Table 4
Confusion matrix of NDVI (Reference) and RE NDVI for classification accuracy assessment for SAM (%) in Gumi-
si.
Reference
Classifications Unburned Low heat-

damaged 
Extreme heat-

damaged Crown fire Producer 
accuracy

User 
accuracy

Unburned 47.24 18.23 0.88 0 47.24 70.22
Low heat-damaged 8.25 22.48 3.59 0 22.48 68.84
Extreme heat-damaged 44.38 55.57 80.56 70.96 80.55 29.50
Crown fire 0.13 3.71 14.97 29.04 29.04 48.89
Total 100.00 100.00 100.00 100.00 — —
Overall accuracy = 43.78%, Kappa coefficient = 0.26

Table 5
Confusion matrix of NDVI (Reference) and VDVI for classification accuracy assessment for SAM (%) in Gumi-si.
Reference
Classifications Unburned Low heat-

damaged 
Extreme heat-

damaged Crown fire Producer 
accuracy

User 
accuracy

Unburned 81.57 21.33 0 0 81.57 74.10
Low heat-damaged 13.59 24.89 0 0 24.89 66.27
Extreme heat-damaged 4.85 53.77 100 0 100 0.02
Crown fire 0.08 0 0 100 100 100
Total 100.00 100.00 100.00 100.00 — —
Overall accuracy = 52.24%, Kappa coefficient = 0.27

crown fire classes in the ML method (Table 2), while NDVI and VDVI thresholding showed 
high accuracy for these fire severity classes in the SAM method (Table 4). The misclassification 
of fire severity was due to the use of a pattern of spectral reflectance rather than an absolute 
value of reflectance for each fire severity class in the SAM method.(4) NDVI and RE NDVI 
showed the lowest overall accuracy among the classification accuracy assessments in SAM 
(Table 4). This was caused by confusion between low heat-damaged and crown fire areas 
resulting from the similar NDVI values for areas with fire damage or a discolored crown. Also, 
the similar reflectance values and patterns of unburned and low heat-damaged areas were 
caused by misclassification, which increased the amount of misclassification (Table 4).

4. Discussion

 We investigated forest fire severity using ML and SAM techniques to evaluate classification 
accuracy using UAV multi-spectral images taken in South Korea. The result indicated that the 
ML method presented the highest fire severity accuracy level (>80%) for both users and 
producers. Even though SAM showed low overall accuracy, predictions in the unburned and 
crown fire classes showed that its classification accuracy is acceptable. 
 The misclassification between unburned and low heat-damaged areas and between extreme 
heat-damaged and crown fire areas indicated that several sets of training data are required to 
increase the overall accuracy of fire severity classification in the ML method. However, in the 
case of SAM, the accuracy was more affected by the spectral patterns of fire severity classes 
than by the quantity of training sample data.
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 According to Shin et al.,(4) the NDVI thresholding method showed superior performance to 
ML and SAM in forest fire detection and classification. Moreover, as previously reported, we 
also revealed that NDVI and RE NDVI have moderate accuracy with the ML and SAM methods. 
Therefore, the combination of NDVI, RE NDVI, and VDVI is expected to estimate forest fire 
damage with a higher accuracy level in a limited time. To achieve this, further studies including 
more survey and training data are required to generalize the threshold for application in forest 
fire severity classification. 
 UAVs are more cost-effective than satellite or airborne imaging in generating high-resolution 
multi-spectral images. The application of UAVs will enhance forest fire restoration plans by 
providing cost-effective and high-quality data. Additionally, the high-resolution images 
collected with UAVs will provide high-quality training data, increasing the accuracy of 
classification results. 
 High-quality training data will enhance the use of machine learning or deep learning 
algorithms for the detection of damaged areas of forest and for post-fire monitoring research to a 
national or state level. The Korean government is planning to launch a new earth observation 
satellite mission in 2023 involving the CAS500 satellite (CAS: compact advanced satellite), 
which will focus on forested and agricultural areas. In preparation for the use of CAS500 in 
forestry and agriculture, further research must be conducted on the use of high-resolution multi-
spectral images in both sectors.  

5. Conclusions

 We investigated the use of multi-spectral UAV images to assess forest fire severity. Two 
supervised learning techniques, the SAM and ML methods, were used for this purpose. The 
results indicated that ML has high accuracy for fire severity classification while SAM has 
moderate overall accuracy. In the Gumi-si region, ML was more effective than SAM in 
identifying the crown fire and extreme heat-damaged areas.
 Regarding the ML method, the highest accuracy was obtained for the crown fire class. 
Despite these promising results, there were some issues in establishing the classification limit 
between some areas (e.g., the unburned area and the low heat-damaged area) in both the SAM 
and ML methods. Thus, further research is required to improve the accuracy of fire severity 
classification from multi-spectral images. It is also necessary to factor in other elements such as 
under-canopy inventory and crown density, which can provide additional information for the 
accurate classification of damaged areas (e.g., unburned and low heat-damaged areas).
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