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 In this study, an accelerometer was installed on a computer numerical control (CNC) grinding 
machine, and the vibration signal of the accelerometer was processed by short-time Fourier 
transform (STFT) to observe the correlation between the wear behavior of the grinding wheel 
and the characteristic frequency during the grinding process. Two sets of accelerometers were 
adopted to collect the vibration signal, which was transformed to a time–frequency diagram by 
STFT. From the time–frequency diagram, it was deduced that the frequency bands of the 
grinding wheel and the workpiece were 500–700 Hz and 1200–1280 Hz, respectively. According 
to the comparison between the frequency band and the time–frequency diagram of the sensing 
signal at the workpiece with surface roughnesses Ra and RZ, when the spectral energy increased, 
the surface roughness of the workpiece increased significantly, the self-sharpening was 
completed at the same time, and the increased surface roughness of the workpiece was 
maintained.

1. Introduction

 In recent years, due to the rapid development of science and technology, the requirements for 
high-precision components and molds have gradually increased. Therefore, it has become even 
more important to develop key technologies for precision manufacturing and grinding tools. In 
general, grinding wheels for grinding machines require high rigidity, durability, crack resistance, 
a good damping ratio, and thermal conductivity in industrial applications. In addition, grinding 
wheels must be applicable to both traditional finishing applications and high-performance 
grinding.(1–4)

 The rapid development of grinding tools has also led to the development and application of 
high-performance grinding machines and superhard abrasive grinding wheels.(5) However, the 
edges and corners of grinding wheels are gradually rounded during grinding, which reduces the 
self-sharpening ability of grinding wheels.(6) As a result, in addition to a reduced grinding force 
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and poor surface roughness, the pores on the surface of grinding wheels become filled with 
debris as a result of grinding, causing the grinding wheel to become a serrated plane and lose its 
grinding force.
 As the grinding force of the grinding wheel gradually deteriorates, the grinding wheel must 
be pruned to restore its grinding force. However, the high rotational speed of the grinding wheel 
during the grinding process makes it impossible to directly observe the variation in its grinding 
force. Should the grinding force of the grinding wheel deteriorate, abnormal grinding phenomena 
will occur, indicating that pruning is necessary.(7–9)

 To enhance the use time and grinding accuracy of grinding wheels, Wu et al.(10) and 
Srivastava et al.(11) utilized a high-speed grinding machine to investigate the effects of the 
grinding force, temperature, and surface characteristics on the surface accuracy of the workpiece 
in the grinding of SiC materials. They compared the relationship between the real-time grinding 
force, temperature, and visual appearance of damage and debris in SEM micrographs. They 
found that the ductile mode grinding of SiC can be achieved by increasing the wheel speed and 
controlling the grinding parameters. Dai et al.(12) investigated the influence of the rotational 
speed of a vitrified cubic boron nitride grinding wheel on the grinding temperature and power 
consumption in the grinding of Inconel 718 nickel-based superalloy. They found that the 
grinding load of a single grain of vitrified cubic boron nitride abrasive is an important parameter 
that directly affects the surface accuracy, and the relationship with the surface roughness can 
also be evaluated from the grinding load of a single grain of vitrified cubic boron nitride 
abrasive. In experiments, they found that the rotational speed of the grinding wheel could be 
increased to 100–120 m/s when grinding Inconel 718 and they achieved a surface roughness Ra 
of less than 0.4 μm.
 Recently, the application of AI in machine tool automation has rapidly progressed. 
Rowe et al.(13) proposed AI algorithms to enhance the surface accuracy after grinding and 
improve the efficiency of the grinding process. Maksoud et al.(14) proposed the use of the 
backpropagation (BP) learning algorithm in an artificial neural network (ANN) to operate a 
grinding controller. The method was adopted to monitor signals of the grinding wheel speed and 
feed rate and adjust control strategies to satisfy the required surface roughness accuracy. Yang 
and Yu(15) adopted discrete wavelet transform and support vector machine methods to establish a 
wear monitoring system for grinding wheels. The monitoring system utilized an acoustic 
emission (AE) sensor to collect the grinding signal so as to identify the preprocessing method of 
the grinding cycle signal, and they conducted various grinding experiments on a surface 
grinding machine, achieving a prediction accuracy of the monitoring system of 99.39%. Also, 
Arriandiaga and coworkers(16,17) adopted ANNs to establish virtual sensors for random and 
nonlinear grinding processes that can instantly monitor grinding factors and power changes in 
the spindle. By comparing the signal of a virtual sensor with the actual measurement result in an 
industrial grinding machine, the wear condition of the grinding wheel and the surface roughness 
grinding performance were effectively predicted. Arriandiaga et al.(18) adopted a recurrent 
neural network algorithm to predict the wear of a grinding wheel and the surface roughness. 
They found that grinding conditions have a greater influence on surface roughness prediction 
than the characteristics of the grinding wheel. Past studies(13–18) have pointed out that the data 
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collected by the built-in sensors of a machine can be used to perform AI algorithm calculations 
to predict grinding wheel wear. For instance, Han and Wu(19) utilized an AE sensor to monitor 
grinding surface characteristics and investigated the relationship between them and the AE 
waveform under different grinding conditions. They found that there is a clear mapping 
relationship between the grinding parameters and the AE signal. There is a high correlation 
between the AE root mean square (RMS) and the linear velocity of the grinding wheel. Also, 
Lopes et al.(20) proposed a new AE signal grinding method to identify the correct pruning time. 
The AE signal was collected in a pruning test carried out using an alumina grinding wheel and a 
single-point pruner. The power spectrum density was subjected to spectral analysis to find the 
characteristic relationship between the grinding parameters and the surface. The result can be 
used to determine the status of the grinding wheel and thus monitor the grinding wheel. In 
another study, Wang et al.(21) proposed an ANN method to detect the burn surface characteristic 
of a workpiece (the undesirable changes in the metallurgical properties of the material caused by 
excessive corrosion or inappropriate grinding). The AE signal was used to analyze the hardness 
and contour results (burning or nonburning) after grinding using the feature vector of an ANN. 
Martins and Aguiar(22) established an ANN model to judge the correlation between the AE 
signal and grinding wheel wear. A statistical technique was used to analyze the power of 
frequency bands selected from the AE spectrum, and the signal characteristics were obtained to 
evaluate the frequency bands as the input of the neural network model. It was found that the 
wear condition of the grinding wheel appeared in the 28–33 and 42–50 kHz frequency bands.
 In this study, an accelerometer was installed on a computer numerical control (CNC) grinding 
machine, and the vibration signal of the accelerometer was processed by short-time Fourier 
transform (STFT) to observe the correlation between the wear behavior of the grinding wheel 
and the characteristic frequency during the grinding process. Two sets of accelerometers were 
adopted to collect the vibration signal, which was transformed to a time–frequency diagram by 
STFT. By using the time–frequency diagram to deduce the frequency bands of the grinding 
wheel and the workpiece, the beginning and the end of the self-sharpening phenomena could be 
clearly observed, and it was found that the energy generated when the second self-sharpening 
phenomenon occurred was significantly higher than that for the first phenomenon. It was 
presumed that the self-sharpening phenomena could not perfectly repair the grinding wheel to 
its best state and that insufficient grinding ability caused the energy to surge.

2. Experimental Equipment and Setup

2.1 Experimental equipment

 An ESG-1020CNC (EQUIPTOP Technology, Taiwan) grinding machine was used in this 
study. The workbench dimensions of the grinding machine were 300 × 650 mm and the 
maximum feed rate was 18 m/min. The maximum rotational speed of the spindle was 12000 rpm 
(>100 m/s) and the positioning accuracy was 0.001 mm. A three-axis accelerometer and the NI 
capture card of the signal sensing instrument were installed in the grinding machine. The 
measuring equipment is shown in Fig. 1.
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 An aluminum oxide grinding wheel (KINIK) was used in this study. The workpiece material 
was S45C steel with the standard JIS and ISO specifications. The grinding wheel and material 
characteristics are shown in Table 1.

2.2 Setup of experimental equipment

 In the experiment, the vibration signal measured by accelerometers was used to investigate 
the grinding characteristics and wear mechanism of the grinding wheel for S45C steel 
processing. The accelerometers were placed on the spindle guard and the workbench to measure 
the vibration signal of the grinding wheel, and the vibration signal of the accelerometer was 
transformed to a time–frequency diagram by STFT. Figure 2 shows the placement of the 
accelerometers.

Table 1
(Color online) Material specifications of grinding wheel and workpiece.
Grinding Wheel and Workpiece Specifications

Aluminum oxide 
grinding wheel Granularity × H × V = 205 × 13 × 31.75

S45C
C: 0.42–0.48; Si: 0.15–0.35;

Mn: 0.60–0.90; 
S: ≤0.035; P: ≤0.030

Fig. 1. (Color online)  High-speed surface grinding machine.
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2.3 Theoretical analysis of grinding and STFT

 As a workpiece is ground by the grinding wheel of a grinding machine, the grinding wheel is 
subjected to a grinding resistance. This resistance can be divided into the radial grinding force 
(Fn), tangential grinding force (Ft), and lateral feed grinding force (Fs), as shown in Fig. 3.
 In the grinding process, the radial grinding force is the largest and more than twice the 
tangential grinding force. The horizontal feed grinding force is extremely small and can usually 
be ignored. Equations (1) and (2) give the grinding force (Fn) and grinding power (Pm), where CF, 
CP, and K are empirical coefficients and B is the width of the grinding wheel. Equation (3) is 
used to calculate the material removal rate of the grinding wheel width (Zs), where Vw is the 
workpiece feed rate, fa is the lateral feed, and fr is the radial feed.

 0.7
n F sF C Z B K= × × ×  (1)

 0.7

1000
p

m s
C

P Z B K= × × ×  (2)

 1000 w r a
s

V f fZ
B
× ×

=  (3)

Fig. 2. (Color online) Accelerometer placement.

Fig. 3. (Color online) Grinding forces in grinding process.
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 The thermal damage of precision parts makes them unable to meet the requirements of 
dimensional precision. The thermal damage of high-precision parts (such as thermal cracks, 
burns, tempering softening of materials, and residual stress) is caused by the high processing 
temperature during grinding. The grinding effect is caused by the high-speed grinding of the 
workpiece with the negative bevel abrasive grain cutting edge; the heat generated by grinding is 
transmitted to the workpiece and the grinding wheel. The heat is taken away by the grinding 
fluid and grinding chips. The grinding temperature can reach 1000 °C, which is the average 
temperature of the contact between the grinding wheel and the workpiece. Figures 4(a) and 4(b) 
show the grinding point temperature of the grinding wheel and the grinding point temperature of 
the abrasive particles, respectively.
 The calorific value between the grinding wheel and the grinding point of the abrasive grain 
can be calculated by Eqs. (4) and (5). 

 0 cQ q B l= × ×  (4)

Here, Q is the calorific value per unit time, B is the width of the grinding wheel, lc is the contact 
arc length, and q0 is the calorific value divided by the unit area and unit of time.

 t sf VQ
J

=  (5)

Here, f is the tangent grinding force of a single particle, Vs is the grinding speed, and J is the 
thermal equivalent of the grinding process.

2.4 Theoretical analysis of continuous STFT

 In this study, an accelerometer was used to measure the vibration signal during the grinding 
of the grinding wheel, and the vibration signal was transformed by STFT to observe the 

(a) (b)

Fig. 4. (Color online) Grinding point temperatures: (a) grinding wheel and (b) abrasive grain.
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correlation between the wear behavior and the characteristic frequency of the grinding wheel 
during the grinding process. The mathematical definition of STFT(23) is

 ( ) ( ) ( ) 2, j fX t f t x e dτω τ τ τ
∞ − π
−∞

= −∫ , (6)

where ω(t) is the window function, x(t) is the signal to be transformed, and X(t,ω) is the Fourier 
transform of ω(t − τ)x(τ). As t changes, the window function shifts on the timeline. After 
calculating the function ω(t − τ)x(τ), the signal only leaves the intercepted part of the window 
function for the final Fourier transform. The result is a complex function, which represents the 
magnitude and phase with the time and frequency of the signals.

3. Results and Discussion

 To observe the self-sharpening phenomena (abrasive fracture, chip adhesion, shedding, and 
wear) and related characteristics of the grinding wheel during the grinding process, we designed 
a set of continuous grinding experiments. The duration of each single grinding in an experiment 
was 30 min with no dressing of the grinding wheel during the process, and the experiment was 
continued until significant abnormalities and characteristics appeared on the grinding wheel and 
workpiece and in the vibration signal. Experiments were divided into two groups with an 
accelerometer installed on the spindle guard of the grinding wheel or the workpiece fixture. 
 By installing an accelerometer at different positions in the experiment, we were able to 
analyze the vibration signals separately. The characteristic frequency bands of the grinding 
wheel and the workpiece were distinguished by the frequency band characteristics, and the 
correlations between the grinding wheel and the workpiece with grinding chatter and other 
phenomena were observed. The single-feed depth was set to 10 µm for grinding, with a feed 
pitch of 2 mm, spindle speed of 2000 rpm, table feed speed of 15 m/min, and 500 µm total depth 
of grinding. The grinding conditions are shown in Table 2. The total grinding time was 360 min. 

3.1 Characteristic frequency band of grinding wheel and workpiece

 We performed STFT on the sampled data obtained by the accelerometers in the two sets of 
experiments and observed the changes in the frequency band energy generated by the grinding 
wheel and the fixture over time, as shown in Figs. 5(a)–5(d). From the results, the main spectrum 

Table 2
 Grinding conditions.
Item Condition Item Condition
Material S45C Speed of workpiece 15 m/min
Wheel type WA-60 Workpiece stroke 200 mm
Total removal 500 μm Roughing 10 μm
Wheel speed 21.5 m/s Cutting pitch 2 μm
Rotating speed 2000 rpm Time 30 min
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energy appeared in two frequency bands of 500–700 and 1200–1280 Hz, and the strongest 
energy in the grinding process should be generated on the grinding wheel and the workpiece. In 
addition, the energy intensity generated by an object closer to the accelerometer will be stronger, 
so it can be concluded that the 1200–1280 Hz frequency band, which produced higher energy at 
the fixture, is the characteristic frequency band corresponding to the workpiece, and the 500–
700 Hz frequency band is the characteristic frequency band corresponding to the grinding 
wheel. 
 In this study, the accelerometers were placed under the workpiece jig and at the end of the 
spindle guard. The vibration signals of the accelerometers during the grinding processes were 
used to analyze the changes in the grinding characteristics of the grinding wheels. Figure 5(a) 

(a) (b)

(c)

(d)

Fig. 5. (Color online) Vibration spectrum diagrams. (a) Time domain diagram of the accelerometer on the fixture. 
(b) Time domain diagram of the accelerometer on the spindle. (c) Time–frequency diagram of the fixture. (d) Time–
frequency diagram of the spindle guard.
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shows the vibration signals from 0 to 360 min with the accelerometer placed under the fixture. 
The magnitude of the vibration signals was ±0.72 m/s2 and relatively consistent for 0–90 min. 
However, the signals gradually become stronger, with the magnitude increasing from ±0.72 m/s2 

at 90 min to ±1.85 m/s2 at 180 min. Between 180 and 360 min, the average magnitude was 
±1.26 m/s2. The increase in the vibration signal magnitude from 90 to 180 min was caused by the 
pore packing of the internal pores of the grinding wheel. The decrease in the vibration signal 
magnitude between 180 and 360 min was caused by the partial removal of the material packed in 
the internal pores of the grinding wheel. The vibration signals from 180 to 360 min were larger 
than those from 0 to 90 min in the grinding process owing to the wear of the grinding wheel.
 When the accelerometer was placed on the spindle guard of the grinding wheel, the vibration 
signal magnitude was ±0.23 m/s2 and relatively consistent between 0 and 90 min. However, after 
90 min of grinding, the vibration signal magnitude gradually increased, reaching ±0.88 m/s2 
after 240 min. This was because the grinding chips began to slowly fill the pores of the grinding 
wheel. After 240 min, the packing layer fell off, and the vibration signal magnitude decreased 
from ±0.88 to ±0.45 m/s2. Between 270 and 360 min, the vibration signal magnitude increased to 
±1.33 m/s2 owing to the packing of grinding chips. 

3.2	 Relationship	between	surface	roughness	and	vibration	signals	at	fixture	and	spindle	
guard

 From the energy change in the time–frequency diagram, it can be observed that the energy in 
the main characteristic frequency band of the fixture increased rapidly between 90 and 210 min, 
so the accelerometer received the vibration signals. The temporal changes in acceleration, Ra and 
RZ, are plotted in Fig. 6. Ra and RZ significantly increased between 90 and 210 min. After 210 
min, the acceleration energy dropped sharply, but the vibration signal was still in a higher 
energy range than that after 90 min, and Ra and RZ were also relatively high, indicating the 
deterioration of the surface accuracy of the grinding process.
 Figure 7 shows the relationship between the spectrum power variation and roughness of 
grinding machining in the time–frequency diagram. The spectrum power was in the main 
characteristic frequency band of the spindle guard. The relationships between the energy of the 
main characteristic frequency band at the grinding wheel, Ra and RZ, were examined. In the 
experiment, Ra increased earlier than the signal of the spindle guard, and RZ increased with the 
increase in energy between 90 and 180 min, similarly to the previous experiments, and all 
spectrum power variation was at a high value. The oscillating spectrum power showed no 
obvious correlation with the acceleration because the signal energy at the grinding wheel does 
not correspond to the surface roughness. Consequently, as the acceleration energy increased for 
the first time, a larger amount of workpiece chip filings became attached to the grinding wheel 
and a larger amount of the grinding wheel grit was fractured. The subsequent large fluctuations 
in Ra and RZ were caused by self-sharpening phenomena, such as random fracture, adhesion, 
shedding, and wear of the grinding wheel. 
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(b)

(a)

(c)

Fig. 7. (Color online) Vibration signals and temporal changes in Ra and RZ of the spindle guard. (a) Frequency 
domain of the spindle guard. (b) Vibration signal and Ra of the spindle guard. (c) Vibration signal and RZ of the 
spindle guard.

(a)

(b) (c)

Fig. 6. (Color online) Vibration signals and temporal changes in Ra and RZ of the fixture. (a) Frequency domain of 
the fixture. (b) Vibration signal and Ra of the fixture. (c) Vibration signal and RZ of the fixture.
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3.3 Surface roughness after grinding

 Figure 8 shows the surface roughness and SEM images of the workpiece after grinding. The 
surface roughness increased with the use time of the grinding wheel. Ra increased from 0.270 
μm (30 min) to 0.527 μm (360 min) and RZ increased from 2.559 μm (30 min) to 4.716 μm (360 
min).
 The relationship between the amount of vibrations and time was obtained by analyzing the 
vibration spectrum of the grinding energy of the grinding wheel by wavelet transform,(24) as 
shown in Fig. 9. From the results, it is found that out of the total energy of all acceleration signals 
during the grinding process, the grinding energies at 500–700 and 1200–1280 Hz accounted for 
29.88 and 56.45%, respectively.

3.4 Results of optical microscopy (OM) measurements

 The experimental results indicated that Ra and RZ increased when the acceleration energy 
rose sharply for the first time, and then they oscillated up and down after 90 min. An 
accelerometer was placed on the spindle guard to measure whether this was related to the change 
in the topography of the grinding wheel and the results are shown in Fig. 10. From the OM 

Fig. 8. (Color online) Surface roughness and SEM images of workpiece after grinding.
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images and the changes in the surface accuracy and acceleration signals within 360 min, it is 
found that from 90 to 120 min, workpiece chips adhered to the gap of the grinding wheel, which 
caused the surface accuracy to deteriorate and the energy of the acceleration signal to increase. 
As the energy began to rise again at 270 min, it was observed that the grinding chips of the 
previous layer peeled off the surface of the grinding wheel along with the self-sharpening 
phenomena, and a new re-adhesion started to form. This also caused the energy to increase 
again and the energy of the second surge was much higher than that of the first surge, which 
means that the self-sharpening of the grinding wheel did not completely return the grinding 
wheel to its best condition. As a result, grinding chips easily and quickly accumulated, resulting 
in a sharp increase in the cutting force caused by insufficient grinding capacity.

Fig. 9. (Color online)  Grinding energy analysis.
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 On the basis of this phenomenon, by applying STFT to the signal and by observing the main 
frequency band of the grinding wheel, one can clearly observe the beginning and end of the self-
sharpening phenomena of the grinding wheel.

4. Conclusions

 In this study, accelerometer sensors were used to collect the acceleration signals of a grinding 
machine during grinding, and STFT was utilized to process the signals to find the relationship 
between the wear of the grinding wheel and the characteristic frequency band during the 
grinding process. In the experiments, the time–frequency diagram obtained after collecting the 
accelerometer signals and STFT led to the following conclusions:
1. The frequency bands of the grinding wheel and the workpiece were 500–700 and 

1200–1280 Hz, respectively. By comparison between the known frequency band and the 
time–frequency diagram of the sensing signal at the fixture with Ra and RZ it was found 
that when the spectral energy increased, the surface roughness of the workpiece increased 

Fig. 10. (Color online) Surface of grinding wheel during grinding.
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significantly, and then even if the self-sharpening was completed, the surface roughness of 
the workpiece remained high.

2. The signal obtained at the spindle guard of the grinding wheel provided a good explanation 
for the self-sharpening phenomena, such as the adhesion of grinding chips on the surface of 
the grinding wheel. The beginning and end of the self-sharpening phenomena could be 
clearly observed from the signal obtained at the spindle guard, and during the second self-
sharpening phenomenon, the energy was much higher than that during the first phenomenon. 
It is speculated that the self-sharpening phenomena could not perfectly return the grinding 
wheel to its best condition and that the insufficient grinding ability caused the energy to rise 
sharply.
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