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	 In this paper, the multi-objective parameter design of the heat sink modules of the converter 
and inverter in a train traction motor drive system was studied.  The high-power insulated gate 
bipolar transistor (IGBT) devices embedded in converter and inverter modules usually generate 
considerable heat due to pulse width modulation (PWM) switching behavior. An appropriate 
heat dissipation system should be designed to reduce the temperature rise of the devices and to 
ensure their safe operation. The response surface method (RSM) was used to build a statistical 
model of the studied problem. The optimal design for the heat dissipation system is to minimize 
the objective functions of both the inlet temperature and outlet temperature of the heat sink 
modules. The three major control factors selected for the RSM are the mileage of nanofilter 
usage, the nanofilter type, and the limited current of the inverter. Since it is difficult to find an 
appropriate mathematical model associated with the three control factors that are based on 
physical principles, the optimal design of experiments (DOE) technique was used to describe the 
relation among the three control factors.  In order to obtain the optimal inlet temperature and 
outlet temperature of the heat sink modules, multi-objective optimal design of the heat sink 
modules was addressed. The multiple performance characteristics index (MPCI) method was 
used to combine the two objective functions into one integrated index. To solve the nonlinear 
statistical model, orthogonal particle swarm optimization was used to efficiently find the 
optimal solution. Results showed that the obtained optimal solution provided the lowest inlet 
temperature and lowest outlet temperature for the heat sink modules in the train traction motor 
drive system. The statistical model can also be uploaded onto a cloud server to provide an 
effective cloud model. The optimal parameter design of the heat sink modules in the train 
traction motor drive system can be applied to provide effective information for an intelligent 
maintenance system (IMS) of the heat sink modules. The developed IMS is expected to increase 
the availability and reliability of nanofilters and heat sink fins using Internet of Things (IoT) and 
Industry 4.0 techniques. 
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1.	 Introduction

1.1	 Cooling demand of power electronic devices

　 In recent years, the cooling demand of power electronic devices has become critical due to 
the increasing power demand of IGBT modules. In particular, in electric trains, if the IGBT die 
temperature exceeds safety limits, the motor drive system of the vehicle will be unable to 
operate, resulting in increased maintenance costs.
	 IGBT modules are becoming more accepted and are increasingly used as high-power and 
high-voltage switching components in power electronic systems. However, IGBT technology 
with high speed and greater packaging density leads to higher power densities on the chips and 
higher operating temperatures. Higher operating temperatures, in turn, lead to an increased 
failure rate and reduced reliability.
	 As power electronic applications continue to switch higher voltages and currents in smaller 
component packages, the resulting increase in power density requires efficient thermal 
management. Sarkar and Issac described the thermal analysis of a three-phase inverter operated 
under a sinusoidal pulse width modulation (SPWM) technique, which used three sine waves 
displaced with a 120° phase difference as the reference signal.(1) They showed that thermal 
radiation from a heat sink played a crucial role in maintaining the junction temperature of the 
IGBT below a threshold value by adjusting various heat sink parameters.
	 Han and Jeong proposed the use of a heat sink(2) attached to an IGBT module to dissipate heat 
caused by electric losses of the IGBT/diode chips and to satisfy the practical design criteria of 
IGBT modules. To evaluate the performance of an air-cooled heat sink, they verified the 
suitability of the simulation model through experimental results obtained with the developed 
product.
	 Chen et al. introduced the concept of the thermal resistance and physical structure of the 
IGBT module and the principle of thermal impedance tests.(3) According to their theoretical 
qualitative analysis and experimental research, the junction-case steady-state thermal resistance 
varies as a function of the heat current, heat sink conditions, sample time, and ambient 
temperature. The transient thermal impedance curve and junction-case steady-state thermal 
resistance of a certain type of IGBT were obtained by thermal resistance test experiments. They 
found that the junction-case steady-state thermal resistance was a function of the heat current.
	 Yu and Webb used a computational fluid dynamics (CFD) technique to identify a cooling 
solution for a desktop computer that used an 80 W CPU.(4) An appropriate CPU heat sink was 
able to meet the CPU temperature specification. System-level design improvements were also 
made to provide better cooling for Accelerated Graphics Port (AGP) and Peripheral Component 
Interconnect (PCI) cards.

1.2	 Boiling cooling process

	 To enhance boiling cooling performance, pin fins with a microporous coating have been used 
on the boiling plate surface.(5) Heat rejection from the module has been achieved using two 
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methods: a water-cooled cold plate and an air-cooled heat sink/fan assembly. In addition to 
experimental testing, an empirically based performance prediction method has also been 
developed. With the water-cooled cold plate and a chip temperature constraint of 100 ℃, the 
cooling module was capable of dissipating heat fluxes of 1850 and 2100 kW/m2 for cold-plate 
water inlet temperatures of 35 and 20 ℃, respectively.  In addition, the total thermal resistance 
for the case of a 35 ℃ inlet was calculated to be 0.355 K/W. The use of a microporous coating on 
the boiling section improved heat transfer by about 31%. With an air-cooled heat sink/fan 
assembly and the same chip temperature constraint of 100 ℃, the cooling module was capable of 
dissipating a heat flux of 2200 kW/m2 and exhibited a total thermal resistance of 0.349 K/W at 
an ambient air temperature of 22 ℃.
	 Lee presented a novel approach to optimize the pin-fin array design of an integrated liquid-
cooled IGBT power module.(5) The results from his study indicated that the device junction 
temperatures were not only reduced in magnitude but also equalized. In addition, the maximum 
power dissipation of the module was enhanced.  Lee also compared the direct pool boiling and 
indirect cold-plate liquid-cooling techniques.
	 Yun et al. analyzed the static and dynamic thermal behaviors of an IGBT module system 
mounted on a water-cooled heat sink.(6) This approach enabled a system designer to 
simultaneously couple a thermal prediction with a circuit simulator to analyze the electro-
thermal behavior of an IGBT module system. Lee et al. described the development of a water-
cooled heat sink(7) and provided a reliable thermal performance for a high-power IGBT inverter. 
They made a prototype of the resultant design and tested the experimental setup to confirm the 
validity of the design.
	 Moores and Joshi presented the thermal analysis and experimental performance assessment 
of an aluminum silicon carbide (AlSiC) metal matrix composite (MMC) base plate with integral 
cooling fins.(8) By attaching a pin-fin base plate to an open-chambered flow-through heat sink, 
the mechanical interface between the base plate and cooling medium was eliminated.
	 Kim et al. investigated a liquid-cooled module as a means of cooling electronic devices using 
boiling and condensation heat transfer.(9) The liquid-cooled module comprised a boiling plate, a 
spacer, and a condenser plate and used FC-72 as the working fluid. The size of the module was 
101 mm × 108 mm × 18 mm and the chip size (heat source) used was 10 mm × 10 mm. 
	 Salem et al. compared the thermal performance for the operation of a MOSFET on a water-
cooled pole-arrayed heat sink versus one operating on a novel water-cooled microchannel heat 
sink.(10) They presented an innovative technique for determining the thermal capacitance 
modeling parameters for heat sinks from experimental data. Maveety and Jung presented a 
comparative investigation between experiments and numerical simulations for the impingement 
of a turbulent air flow on a square pin-fin heat sink.(11) They conducted some experiments using 
an aluminum heat sink subjected to a uniform heat flux by using a silicon test chip. The 
predicted thermal resistance of the heat sink was in good agreement with those obtained from 
experiments.
	 Morozumi et al. developed a directly-liquid-cooled IGBT module that simultaneously 
enabled the downsizing of a power control unit for an HEV system and had high reliability.(12) 
This module eliminated the need for thermal grease by unifying a ceramic substrate and a heat 
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sink. This module reduced thermal resistance by 30% compared with that of a conventional 
indirect-liquid-cooled type.

1.3	 Analytic methodology

	 Chiang presented an effective method for predicting and optimizing the cooling performance 
of a parallel plane fin (PPF) heat sink module based on the Taguchi method.(13)  He performed 
numerical simulative analyses of a PPF heat sink module to understand the effect of its related 
modeling parameters. The design parameters evaluated were the outline design of the heat sink 
module and the wind capacity of the fan, and the thermal resistance of this module was 
considered as the performance characteristic.
	 Cheng et al. demonstrated the applications of CFD simulation and the response surface 
method (RSM).(14) They analyzed the thermal performance of a high input/output, indirect-
liquid-cooled multichip module with seven chips, which is applied in a supercomputer. 
	 A series of similar experiments and corresponding CFD simulations were first conducted to 
evaluate the validity of the CFD simulation method and iteratively determine the interfacial 
thermal resistance of thermal grease. Then, a three-dimensional CFD model was established to 
investigate the heat transfer and fluid flow of the multichip module. By using the CFD model, 
the individual effects of control factors such as the thermal conductivity of the thermal interface 
material and thermal grease, the thickness of the chips, the space between the chips, the solder 
bump pattern, the solder ball pattern, the flow velocity, and the liquid inlet temperature on the 
thermal performance of the module were experimentally studied. Three significant control 
factors were selected to establish a response surface model of the maximum temperature of the 
module with the central composite design based on the RSM and the analysis of variance.

1.4	 Sensor description

	 In the heat sink fins of our work, five temperature sensors are used to detect the real-time 
temperature variation. Five locations are selected to place the temperature sensors: the U phase 
converter, the V phase converter in the rectifier part, the U phase inverter, the V phase inverter, 
and the W phase inverter in the inverter part. 
	 To obtain an integrated temperature for heat sink fins, the five temperature values obtained 
by the sensors are averaged. Also, since the real-time temperature rapidly varies, the PC-based 
analysis system uses a low-pass filter to convert the rapidly varying data into slowly changing 
data.  
	 Three factors are defined in this paper. Factor A is the mileage of nanofilter usage (km), for 
which a mileage measurement system is required. A speed/position sensor is embedded in the 
motor system to detect the mileage value in high-speed trains. Factor B is the nanofilter type 
(kPa). The nanofilter type is related to the material selected to determine the appropriate kPa 
value for the nanofilter module. Factor C is the inverter limited current (A). The sensors 
detecting the inverter current are embedded in the motor drive system. U phase and V phase 
current values are sensed and controlled. The limited current command is set up in the motor 
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control system. Current control loops are designed to keep the high-speed train operating under 
a constant current. 

1.5	 Research purpose

	 Some operational environmental factors cannot be analyzed by CFD software. Different 
railway systems in different countries have different environment conditions. The dust in 
different countries might affect the selection of the nanofilter of heat sink modules. The 
nanofilter type is an essential control factor. Also, the mileage of filter usage should be 
considered to determine the appropriate nanofilter replacement time. 
	 In this study, to ensure the safe operation of the train traction motor drive system, effective 
heat sink modules and nanofilters are required. Effective nanofilters keep the air flow clean in 
heat sink modules. The dust accumulated on nanofilters might affect the air flow, causing the 
temperature to rise quickly. However, too frequent filter replacement might increase the 
maintenance cost.
	 To resolve the trade-off between cost and safety, an optimal design is required to determine 
the appropriate nanofilter type and replacement time. This makes it necessary to develop a 
statistical model to describe and analyze the problem. The optimal solution can then be derived 
using the RSM. 
	 In this paper, multivariate data analysis is used to analyze all types of data. The associated 
analysis is a new technique that is useful in today’s world of analytics.  Multivariate data analysis 
provides an application-oriented method for multivariate analysis for the studied problem. By 
performing statistical research into cloud-based algorithms, we explain how to understand and 
make use of the proposed specific statistical technique in the cloud computing field.

2.	 Heat Sink Fins and Nanofilters in Traction Motor Drive System

2.1	 System overview

	 An overall view of the studied traction motor drive system is shown in Fig. 1. The converter 
and inverter testing systems are shown. The heat dissipation system is required to remove the 
heat generated by the IGBT devices from the heat sink fins. The heat sink fin structure is 
arranged to dissipate the heat of the IGBT devices from the heat sink fins as shown in Fig. 2.

2.2	 Boiling cooling process and temperature variation

	 As shown in Fig. 3, a refrigerant is arranged at the bottom of the pool boiling tank to remove 
the heat from the IGBT device surface. The boiling cooling method is used to remove the heat. 
The boiling refrigerant flows from the bottom to the top. Heat transfer occurs from the 
refrigerant to the heat pipe/heat sink fins. Air cooling occurs at the top to remove heat from the 
heat pipe/heat sink fins to the outside. Then, the boiling refrigerant is condensed again and flows 
back to the bottom. The refrigerant is once again recycled in its boiling cooling process.
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Fig. 2.	 (Color online) Heat sink module of traction motor drive system.

Fig. 3.	 (Color online) Pool boiling and condensation cooling in heat dissipation system.

Fig. 1.	 (Color online) Converter and inverter modules in the traction motor drive system.
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	 The junction temperature variables of the IGBTs/diodes are defined in Fig. 4. When the IGBT 
devices perform PWM switching, heat dissipation occurs due to switching loss from the 
equivalent resistances of the IGBTs/diodes. 
	 As shown in Fig. 5(a), a large current occurs when the traction motor drive system operates at 
a high speed. The threshold between the constant-current and constant-power regions is at about 
100 km/h: the constant-current region is below 100 km/h and the constant-power region is above 
100 km/h.

Fig. 4.	 (Color online) Junction temperature definition of converter/inverter circuits.

(a)

(b)
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Fig. 5.	 Operational characteristics of traction motor drive system. (a) Current versus speed characteristics of 
traction motor drive system. (b) Braking characteristics of traction motor drive system.

(a)

(b)

	 The braking characteristics of the traction motor drive system are shown in Fig. 5(b). The 
constant-current region is below 75 km/h and the constant-power region is above 75 km/h. 
	 A comparison between the junction temperatures of a stopping train and a nonstop train is 
shown in Table 1. The temperature of the inverter module is roughly 95.3 ℃ and the temperature 
of the converter module is roughly 101.3 ℃. The temperature variation during the stopping train 
operation is shown in Fig. 6. The temperature varies from 50 to 95.3 ℃. The temperature 
variation during nonstop train operation is shown in Fig. 7. The temperature varies from 70 to 
101.3 ℃. A large transient current occurs when the train starts and stops.
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2.3	 Heat sink fins and nanofilters

	 The left of Fig. 8 shows a normal case with little dust on the nanofilter. When there is dust on 
the nanofilter (right of Fig. 8), the junction temperature and thermal resistance increase. When 
the operation mileage of the train increases, dust accumulates on the surface of the heat sink 
fins, slowing the air flow and increasing the junction temperature and thermal resistance. 

Table 1 
Junction temperature comparison of IGBT modules.

Case Operation type Weight M/T set Junction temperature
Inverter Converter Figure

Case 1 Stopping train W4 8M4T 95.3 ℃ 102.3 ℃ Fig. 6
Case 2 Nonstop train W4 8M4T 95.3 ℃ 101.3 ℃ Fig. 7

Fig. 6.	 (Color online) Temperature waveforms during operation (stopping train operation).

Fig. 7.	 (Color online) Temperature waveforms during operation (nonstop train operation).
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	 To determine the effect on dust on the nanofilter, five wind tunnel tests are performed to 
compare the temperature variation caused by the effect of dust. The results are shown in Table 2 
and Fig. 9. Case 1 is the normal case without dust, and in Cases 2–5, dust covers 1/4, 1/3, 1/2, and 
2/3 of the fin surface area, respectively. 

Table 2 
Case studies for testing junction temperatures of IGBT modules.

Condition
Case 1 Normal cooling
Case 2 Dust covers 1/4 of fin surface area
Case 3 Dust covers 1/3 of fin surface area
Case 4 Dust covers 1/2 of fin surface area
Case 5 Dust covers 2/3 of fin surface area

Fig. 8.	 (Color online) Dust accumulation on heat sink fin. 

Fig. 9.	 Thermal model of heat dissipation system for wind tunnel tests.
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	 In Fig. 10, Cases 1 and 2 are compared. Case 2 exhibits a higher temperature than Case 1. In 
Fig. 11, Cases 1, 3, 4, and 5 are compared. Cases 4 and 5 exhibit higher temperatures than Cases 
1 and 3.
	 Figure 12 shows the waveform when the limited operating current is switched from a peak 
value of 1500 to 2000 A, and Fig. 13 shows the waveform when the limited operating current is 
switched from 1500 A to the stop mode. If the junction temperature is too high, the IGBTs/
diodes are seriously burnt and burst, as shown in Fig. 14.

Fig. 10.	 (Color online) Results of wind tunnel tests of Cases 1 and 2.

Fig. 11.	 (Color online) Results of wind tunnel tests of Cases 1, 3, 4, and 5.
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3.	 Material Selection and Sensor Arrangement 

	 A series of experimental runs based on the RSM were performed to obtain the effective 
relation between the three studied control factors, where the inlet and outlet temperatures were 
recorded. Three cabins of a high-speed train were selected for the experimental testing runs. The 
three types of filter in Table 3 were installed in the heat sink modules of the three cabins.
	 The overall experimental setup is shown in Figs. 15–17. As shown in Fig. 18, two temperature 
recorders are used to measure the temperature of the power devices and heat sink fins. The inlet 
temperature recorder is located near the heat dissipation base plate of the power IGBT devices.  

Fig. 12.	 (Color online) Measured waveform when limited current is switched from 1500 to 2000 A.

Fig. 13.	 (Color online) Measured waveform when limited current is switched from 1500 A to stop mode.
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The outlet temperature recorder is located near the heat sink fins. The data obtained from the 
two temperature recording devices are used to obtain a statistical model of the temperature 
associated with the three control factors. Because the three control factors are inherently 
empirical factors, it is difficult to derive an appropriate mathematical model using the principles 
of physics.

Table 3  
Specifications of inlet filters used in experimental runs.

Cabin location Filter material Specification
Cabin 6 40-mesh nanofilter 1.6 kPa
Cabin 7 nanofilter 0.9 kPa
Cabin 8 25-mesh nanofilter 2.3 kPa

Fig. 14.	 (Color online) Burnt and burst IGBT and diode power devices.

Fig. 15.	 (Color online) Experimental setup with temperature recording system.
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	 The temperature recorders in Fig. 18 are installed in the heat sink modules of train cabins 6, 
7, and 8. The three types of filter are installed in train cabins 6, 7, and 8 to maintain the same 
testing environmental conditions. The obtained optimal solution can provide the optimal 
nanofilter type and nanofilter replacement time to maintain the good condition of the nanofilter 
in Fig. 19.  
	 The three types of nanofilter material in Table 3 are adopted to assess the performance of the 
nanofilter.  In train cabin 7, two layer 25-mesh nanofilters with a stainless middle mezzanine 

Fig. 16.	 (Color online) Nanofilter and vacuum cleaner arrangement of the heat sink modules.

Fig. 17.	 T&D–TR0106 temperature sensor. Fig. 18.	 (Color online) T&D–TSP-13 temperature 
recorder.
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layer nanofilter are installed, as shown in Fig. 20. In cabin 8, the middle mezzanine layer is 
changed from a stainless nanofilter to a synthetic fiber nanofilter, as shown in Fig. 21. In cabin 6, 
40-mesh nanofilters are added, as shown in Fig. 22.

4.	 Statistical Modeling Based on RSM

4.1	 Fuzzy inference using MPCI in statistical model

	 In this paper, a statistical modeling technique based on the RSM is used.(15) The inlet 
temperature and outlet temperature of the heat sink modules are selected as two objective 
functions for study. In the design of the nanofilter and heat sink fins, control factors possibly 
affecting the inlet/outlet temperature are selected to formulate a statistical model. 
	 Three control factors are studied: the mileage of nanofilter usage, the nanofilter type, and the 
inverter limited current. Case 1 is used to study the problem of minimizing the inlet temperature. 
Case 2 is used to study the problem of minimizing the outlet temperature. Case 3 is used to study 
the problem of minimizing both the inlet and outlet temperatures using the MPCI method. The 
levels of the three control factors are defined in Table 4.
	 The measured inlet/outlet temperature recorded by the temperature recorder is defined as 
T(i). The values listed in the RSM are yi = 1/ T(i). In other words, the minimization problem is 
converted into a maximization problem. Case 3 is mainly focused on in this paper; Cases 1 and 2 

Fig. 19.	 (Color online) Nanofilter structure of heat 
sink modules.

Fig. 20.	 (Color  on l i ne)  25 -mesh na nof i l t e r 
arrangement in Cabin 7.

Fig. 21.	 (Color  on l i ne)  25 -mesh na nof i l t e r 
arrangement in Cabin 8.

Fig. 22.	 (Color  on l i ne)  40 -mesh na nof i l t e r 
arrangement in Cabin 6.
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are similar and are omitted due to space limitations. Fuzzy inference is required to integrate the 
two sets of measured data in Cases 1 and 2 into a single compact index in Case 3. The 
membership functions of the measured data in Cases 1 and 2 are first defined.(16–18) 

4.2	 MPCI values

	 The derived final fuzzy MPCI values in Case 3 are listed in Table 5 and compared with those 
in Cases 1 and 2. In order to build the statistical model of the RSM, 16 experimental runs with 
four central-point experimental runs are performed, as listed in Table 5.(19,20) 
	 There are a total of 20 experimental runs in the RSM. Sixteen experimental runs (Runs 1–16) 
are used in the combinational table and four experimental runs (Runs 17–20) are central-point 
experiments. 

5.	 Response Surface Experimental Results

	 The average value in the four central-point experiments is 

	 Cp  = (0.261394 + 0.229883 + 0.246822 + 0.262494) / 4 = 0.250148.	 (1)

	 The average value in the 16 experimental data in the combinational table is

	

F  0.088391  0.630976  0.2221  0.799535  0.168144 
 0.645827  0.233112  0.976240  0.061215  0.195666  0.121359
 0.217606 0.071250  0.151290  0.121646  0.272716  /  16 

 0.311067.

(

)

p = + + + +
+ + + + + +
+ + + + +

=

 	 (2)

The curvature of the sum of the square variance is calculated as

	
2 2( ) (16)(4)(0.311067 0.250148) 0.011876

16 4
F C F C

C
F C

n n p pSS
n n

− −
= = =

+ +
.	 (3)

The error of the sum of the square variance is

Table 4
Level definitions in RSM.

Factor Level definition
Factor A
(mileage of nanofilter usage, km)

−1
120000

0
90000

1
60000

Factor B
(nanofilter type, kPa)

−1
2.3

0
1.6

1
0.9

Factor C
(inverter limited current, A)

−1
2000

0
1850

1
1700
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	 ( )2 2 2

1
(0.261394 0.250148) ... (0.262494 0.250148) 0.000701

Cn

E i C
i

SS p p
=

= − = − + + − =∑ ,	 (4)

where
nF: number of experimental runs in combinational table.
nC: number of experimental runs in central-point experiments.
	 The F statistic is derived as

	
( )

/ 1 0.011876 50.850.000701/ 1
4 1

C

E C

SSF
SS n

= = =
−

−

.	 (5)

	 The regressive model is derived as

	
1 2 3 1

2 1 2 1 3 2 3 1 1

2 1 3 1 1 2 2 2 3 2

0.298883 0.175165 0.059472 0.018961  0.15947
0.00759 0.02082 0.006352 0.011428 0.11744
0.02773 0.01633 0.00021 0.00627 0.01672 .

p r r r s
s r r r r r r r s
r s r s r s r s r s

= + + + −

− + + + −

− − − − −
	 (6)

	 The mean response surface is derived as

	
0

�

1 2 1 3 2 3

( ( , ))
                  0.298883 0.175165 0.059472 0.018961

0.02082 0.006325 0.011428 .

sE p r s b r r r
r r r

r r r r r r

′ ′= + +

= + + +

+ + +

b B
	 (7)

Table 5  
MPCI values in Cases 1, 2, and 3.

Runs Case 1 Case 2 Case 3
Inverse of inlet temperature Inverse of outlet temperature MPCI

1 0.014554 0.016021 0.088391
2 0.019900 0.022002 0.630976
3 0.015284 0.016748 0.222100
4 0.023607 0.023895 0.799535
5 0.014415 0.015835 0.168144
6 0.019759 0.022784 0.645827
7 0.015024 0.017572 0.233112
8 0.024492 0.026976 0.976240
9 0.013390 0.014531 0.061215

10 0.014868 0.016184 0.195666
11 0.013945 0.015078 0.121359
12 0.015249 0.016815 0.217606
13 0.013490 0.014276 0.071250
14 0.014217 0.015574 0.151290
15 0.013970 0.015042 0.121646
16 0.016041 0.018212 0.272716
17 0.016003 0.017790 0.261394
18 0.015274 0.017117 0.229883
19 0.015691 0.017428 0.246822
20 0.015957 0.017883 0.262494
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	 The variance response surface is formulated as

	 ( )( )
2 22

2 2 2
1 2

1 2
,s si s s

i s

p p pVar p r s
s s

σ σ σ
    ∂ ∂ ∂

= = +    ∂ ∂ ∂    
∑ ,	 (8)

	 1 2 3
1

0.117439 0.027734 0.016329 0.159474p r r r
s
∂

= − − − −
∂

,	 (9)

	 1 2 3
2

0.000211 0.006274 0.016717 0.0075851p r r r
s
∂

= − − − +
∂

.	 (10)

	 Assuming that the standard deviations of s1, s2 are 
1

1sσ = , 
2

1sσ = , then the variance response 
surface is derived as

	

2 2
1 2 3

2 2
1 2 3

1 2 3 1 2
2

1 3 2 3 1

( ( , )) ( 0.117439 0.027734 0.016329 0.159474) (1)

( 0.000211 0.006274 0.016717 0.007585) (1)
0.037460 0.008941 0.005462 0.006517

0.003842 0.001115 0.013792 0.0

sVar p r s r r r

r r r
r r r r r

r r r r r

= − − − −

+ − − − −

= + + +

+ + + + 2
2

2
3

00809

0.000546 0.025489.

r

r+ +

	 (11)

	 The mean response surface is plotted in Fig. 23. The associated contour plot is shown in 
Fig. 24. The variance response surface is plotted in Fig. 25. The associated contour plot is shown 
in Fig. 26. 
	 The overall optimization problem is formulated as

Fig. 23.	 (Color online) Three-dimensional plot of 
mean response surface.

Fig. 24.	 (Color online) Contour plot of mean response 
surface.
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	 �

1 2 1 3 2 3

( ( , )) 0.348641 0.105007 0.033469 0.009046
0.026088 0.003792 0.005856 ,

sMinE p r s r r r
r r r r r r

= + + +

+ + +
	 (12)

which is subject to

	

1 2 3

1 2 1 3 2 3
2 2 2

1 2 3

( ( , )) 0.016763 0.004302 0.000038
0.003606 0.000201 0.000162

0.006928 0.000485 0.000189 0.010196
100.

sVar p r s r r r
r r r r r r

r r r

= + +

+ + +

+ + + +

≤

	 (13)

	 The constraints of the variables are

	 1 2 3  2.0 2.0, 2.0 2.0, 2.0 2.0.r r r− ≤ ≤ − ≤ ≤ − ≤ ≤ 	 (14)

	 Therefore, the optimization problem is completely formulated and the statistical model is 
built up. In the following, the optimization process by orthogonal particle swarm optimization to 
derive the optimal solution is discussed.

6.	 Optimal Solution of Statistical Model by Orthogonal Particle Swarm 
Optimization 

6.1	 OPSO derivation

	 Particle swarm optimization emulates the group dynamic behavior of animals.(21–24) Each 
particle in a group is affected not only by itself but also by the overall group. Position and 
velocity vectors are defined for each particle. The search method combines the contribution of 

Fig. 25.	 (Color online) Three-dimensional plot of 
variance response surface.

Fig. 26.	 (Color online) Contour plot of variance 
response surface.
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the individual particle with the contribution of the group. For a particle modeled as a point in a 
search space with D dimensions, the ith particle associated with the problem is defined as(23,24)

	 ( )1 2, ,...,id i i iDX r r r= ,	 (15)

where d = 1, 2, …, D, i = 1, 2, ..., PS, and PS is the population size. The individual particle value 
and the group value associated with each particle Xid are respectively defined as

	 ( )1 2, ,...,pd p p pDP p p p= ,	 (16)

	 ( )1 2, ,...,gd g g gDP p p p= .	 (17)

	 The speed vector used to refresh the optimization is defined as

	 ( )1 2, ,...,id i i iDV v v v= .	 (18)

	 The position and velocity vectors are updated as

	 ( ) ( )1
1 2() ()n n n n

id id pd id gd idV V c rand P X c rand P X+ = + × × − + × × − ,	 (19)

where 1  �
id id idX X V+ = + .

6.2	 Optimal solution of statistical model

	 The opt imizat ion problem is  solved to obtain the opt imal solut ion of 
( ) ( )1 2 3, , 2.0000, 2.0000, 2.0000r r r = + + + .  The optimal mean response is der ived as 

( )( ), 0.96037sE p r s =  and the optimal variance response is derived as ( )( ), 0.23351sVar p r s = . 
In other words, the mileage of filter usage is 60000 km, the filter type is 0.9 kPa, and the inverter 
limited current is 1700 A. The optimal MPCI value is 0.96037. The optimal inverse of the inlet 
temperature is 0.024492, which means that the optimal inlet temperature is 40.83 ℃. The 
optimal inverse of the outlet temperature is 0.026976, which means that the optimal outlet 
temperature is 37.07 ℃. 

7.	 Discussion

(1) As shown in Table 6, the inlet temperature is minimized in Case 1 and the outlet temperature 
is minimized in Case 2. In Case 3, the inlet/outlet mixed MPCI value, which combines the 
minimum inlet and outlet temperatures, is minimized. Since the curvature of the statistical 
model is very small, a first-order model is used to describe the problem. 
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(2) Cases 1 and 2 have similar solution sets. In the solution of Case 3, the outlet temperature is 
the lowest among the cases but the inlet temperature is not the lowest. However, the inlet 
temperature is still acceptable as compared with those of Cases 1 and 2.  

(3) The heat sink modules and nanofilters are essential components in the traction motor drive 
system of high-speed trains. To ensure the safety of high-speed trains, the maintenance 
problem should be emphasized and studied intelligently. 

8.	 Conclusions

	 The nanofilter-type heat sink module is a key factor of high-speed trains, which cannot be 
simulated by CFD software.  Also, the mileage of filter usage is a factor related to the 
maintenance problem. It is necessary to analyze the effect of different nanofilter types and the 
mileage of filter usage by a design of experiments (DOE) method. 
	 In this study, measured data were analyzed by the RSM.  A statistical model was derived to 
reveal the relation between the inlet/outlet temperature values and three control factors.  The 
optimal lowest temperature values were obtained to realize the practical design of heat sink 
modules and to ensure the safe operation of a train traction motor drive system.    
	 The inlet temperature and outlet temperature were evaluated simultaneously using a fuzzy 
MPCI method, with fuzzy inference used to combine the two values into a single compact index.  
The mean response surface and variance response surface were derived to describe the studied 
problem.  The inlet/outlet temperature objective functions were represented and associated with 
the three control factors.  The three control factors practically considered in this model might be 
encountered in practical problems.
	 It is expected that the proposed statistical model can be further developed as a cloud model 
and uploaded onto a cloud server to provide smart cloud-based predictive maintenance for a 
high-speed railway system.  A good design reference was successfully developed to realize an 
intelligent industrial maintenance system related to nanofilters and heat sink fins for a high-
speed railway system using IoT and Industry 4.0. 
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Table 6 
Comparison of Cases 1, 2, and 3. 

Item Case 1 Case 2 Case 3
Method RSM RSM Fuzzy MPCI RSM
Objective function Inlet temperature Outlet temperature Inlet/outlet mixed MPCI value
Curvature  12.3607  4.504 50.85
Solution 0.025144 

(39.77 ℃)
0.025248
(39.60 ℃)

0.024492
(40.83 ℃)

0.026976
(37.07 ℃)
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