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 For robots manipulating objects, more sophisticated manipulations would be possible if 
surface information about the object were available.  This information becomes even more 
critical when the manipulation is to be carried out in an unstructured environment.  Tactile 
sensing has been the norm for collecting such surface information.  In this paper, a sensor for 
recognizing surface texture was developed, in which a ridged structure on its surface, which 
generates vibrations when moved along the surface of the object of interest, is used.  The pattern 
used for the ridged structure combines two distinct patterns that are found in different parts of 
a human fingerprint.  In this work, sensors with two distinct fingerprint-like structures were 
first developed and tested to acquire surface texture information.  Texture features were also 
extracted and identified with these sensors.  Then a hybrid pattern was created by combining 
the two previously tested distinct structures.  Finally, a series of experiments was conducted 
to compare the performance of sensors with a ridged structure having a single fingerprint 
pattern and a hybrid sensor whose ridged structure consists of two fingerprint patterns.  In the 
experiments, the sensors collected surface information from nine different textured samples.  
Through these experiments, it was confirmed that the sensor using the hybrid pattern has better 
surface identification capabilities than the sensors using a single pattern.

1. Introduction

 Tactile sensors have many benefits in various robotics applications; in particular, they 
have proved useful for challenging manipulation tasks.(1)  They provide information about the 
external environment, such as the contact area, temperature, vibration, and pressure, as well as 
providing sliding detection.(2)  Typically, tactile sensors are more sensitive than other sensors, 
such as visual or acoustic sensors.  In recent years, tactile technology has been recognized as 
one of the fundamental technologies in robotics that will help achieve higher functionality and 
improved safety.(3)
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 Recently there have been many successful applications of traditional tactile sensors.  
They are particularly suitable in industrial applications where the working environment is 
carefully predefined.(4)  They can detect the existence of an object, the presence of contact, 
and the intensity of the contact forces.  However, as the areas of robotic application evolve, the 
environment in which robots operate changes.  Although robots have been successfully working 
in a repetitive and predictable manner under a structured environment, in the near future, it is 
hoped they will be able to carry out much more complicated tasks while gathering information 
about the unstructured environment around them.(5)  As a result, it is becoming more important 
to recognize and manipulate unknown objects rather than just perform specific tasks defined 
in advance.  Handling an object without any information about it is a very difficult task.  If 
an operating system does not have enough information about an object, it is impossible to 
determine its shape and color.(6)  Also, the vertical and shear forces along with the strain applied 
to an object would be a good combination to know for detecting the hardness of the object.(7)  
 Various types of sensors have been developed to obtain information on the surface of an 
object.  These sensors are mainly divided into a visual-based method(8,9) and a tactile-based 
method.(10,11)  Vision-based sensors take advantage of the superior resolution of the image 
sensors.(12)  This sensor requires a sufficient distance between the point of contact and the image 
sensor to obtain an image.  It causes the disadvantage of increasing the overall size.  A tactile-
based sensor, where it is difficult to integrate a large number of tactile cells, has a limitation 
in resolution even if it is made in the form of an array.  However, it can be implemented in 
various ways such as film form(13) or fabric from.(14)  In addition, different approaches can be 
used depending on the purpose.(15)  In particular, it is effective when obtaining information 
about depth among surface information.(16)  Using microvibration, it is possible to detect subtle 
differences in depth, which are difficult to understand with a vision-based sensor.
 In order to measure the texture of an object using a tactile sensor, the examination of 
the principles of the human tactile function should be the first step.(17)  We obtain tactile 
information from a number of mechanoreceptors located in the dermis layer of our skin.  There 
are four receptors: the Meissner corpuscle, Merkel corpuscle, Pacinian corpuscle, and Ruffini 
cylinder.  They are known to react in contrasting ways to stimulation.  The Meissner and 
Merkel corpuscles react to pressure and touch.  The Pacinian corpuscle reacts to vibration and 
deep pressure, whereas the Ruffini cylinder reacts to the elongation of the skin.  The Merkel 
corpuscle and Ruffini cylinder are slowly adapting (SA) mechanoreceptors, and the Pacinian 
corpuscle and Meissner corpuscle are rapidly adapting (RA) mechanoreceptors.
 There are two ways to recognize the surface of an object in contact with our skin.(18,19)  First, 
there is the static spatial recognition of the force needed to manipulate it, for which information 
on the weight and hardness of the object as well as the friction coefficient of the contact surface 
are required.  Therefore, enhanced identification of an object is needed for a robot to work in an 
unstructured environment.  Objects can be identified by their shape, color, hardness, and texture.  
Visual information can be used to develop a method that collects texture information using 
spatially evenly distributed sensors.  Second, there is transient time-dependent recognition, 
which is sensitive to time-dependent variations of the skin–object interaction, especially their 
relative movements.  SA receptors detect spatial deformation of the skin, whereas RA receptors 
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sense temporal deformation.  SA receptors recognize the shape of an object by measuring the 
cutaneous pressure, for example, simply by touching the surface of an object with a human 
fingertip.  On the other hand, RA receptors detect variations in the skin–surface interaction that 
arises with relative movements such as rubbing.(20)  Vibration signals detected by RA receptors 
can be processed into texture information about an object.  The RA receptors, particularly the 
Pacinian corpuscle, play a prominent part in the recognition of the roughness of the texture.  
For example, if someone wants to know the texture of two different objects, they must rub their 
fingers along each surface; simple contact or a pressing motion is not enough.  Furthermore, SA 
receptors are not very effective for recognizing the characteristics of extremely fine surfaces, 
because these receptors would have to be very densely packed for successful identification of 
a fine surface.  As a result, it is insufficient to try to mimic the function of only SA receptors 
in a tactile sensor for recognizing texture.  If the sensor uses both RA and SA receptors, it will 
have excellent performance.(21)  However, this entails structural complexity.  RA receptors show 
better performance if only one receptor is used for structural simplicity because they mainly use 
vibration for the identification of a surface, which allows a low spatial distribution density.
 To create a texture sensor that replicates RA receptors, a scanning process involving rubbing 
the surface of an object is necessary.  This process is in contrast to the fact that a normal force 
can only be measured by touching.  Instead, the generated vibration signal is a dynamic signal.  
These dynamic signals have various frequency components that can be used to extract texture 
features through appropriate signal processing.(22)  Haptic texture perception proceeds through 
a predictive model or an artificial neural network.(23)  There has been research on the data 
processing approach to achieve reliable screening results.(24)

 If a tactile sensor is able to record vibration signals more accurately, its performance will 
be improved.  To better detect vibration signals, humans have fingerprints.  The primary role 
of a fingerprint is not to increase the frictional force when gripping an object but to enhance 
the vibrations felt during the skin–surface interaction.(25)  To achieve this, fingerprints convert 
horizontal motion between the skin and an object’s surface into a vertical movement between 
the skin and mechanoreceptors.  A sensor structure that simulates human fingerprints has been 
developed by Salehi et al.,(26) who demonstrated how the fingerprint structure affects vibration 
induction.  Furthermore, the effects of the geometry and the sliding direction of the fingerprint 
were studied by Oddo et al.,(27) who showed that fingerprints made of straight lines have 
different characteristics from those made of curved lines in terms of roughness encoding.
 We conducted a study into how to improve the performance of distinguishing the textures 
of the surfaces of various objects.  Fingerprint structures with two distinct geometries were 
adopted to accomplish this.  Each fingerprint structure was created by simulating human 
fingerprint structures.  The vibration signals generated from these fingerprint structures 
when they are in contact with an object were measured, and a series of signal processing steps 
extracted the texture’s features.  When each fingerprint pattern was used for measurement 
independently, the signal profiles produced by each one were different.  Moreover, when the 
two patterns were combined side by side and used together, we observed increased performance 
at distinguishing the textures of surfaces.
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2. Tactile Sensor System

 This section describes the two parts of the tactile sensor system.  One part is the hardware 
that measures vibrations.  This vibration measurement simulates the human RA receptors by 
using an artificial fingerprint structure.  The other part distinguishes the surface of the object 
using the signal received from the sensor.  We will describe how to post-process the vibration 
signal in the following.  An algorithm for classifying surfaces using the extracted signal is also 
presented.

2.1 Sensor design

 The developed sensor was fabricated by simulating the fingerprint structure and RA 
receptor.  It consists of an artificial fingerprint structure that mimics a human fingerprint 
structure and a piezoelectric element that mimics an RA receptor.
 The artificial fingerprint structure amplifies the vibration generated when the sensor rubs 
the target surface.  When the fingerprint structure touches the surface and slides horizontally, 
vibration occurs owing to the stick-slip phenomenon.(28)  Oddo et al. reported that the vibration 
pattern caused by the stick-slip phenomenon changes according to the shape and direction of 
the fingerprint structure.(27)  They found that a curved fingerprint structure was more effective 
when scanning in multiple directions, but no details were provided on which fingerprint pattern 
would be more advantageous overall.  In this paper, sensors have two curved fingerprint 
structures as follows.  
 As shown in the rectangular shaded area in Fig. 1(a), the front edge of a human fingertip has 
sinusoidal wave patterns.  Note that we often first touch a new surface with our fingertips.  On 
the other hand, in the circular shaded area in   Fig. 1(a), the center of the human fingertip has a 
concentric circular pattern.  This part is used when the finger is in contact with a large surface 
area.  Observing human fingerprint patterns and their contact situations, we selected the 
sinusoidal wave pattern and the concentric circular pattern to determine the dependence of the 
sensor efficiency on the pattern.  

Fig. 1. (Color online) Fingerprint patterns and their contacts. (a) Two representative patterns. (b) Contact with 
fingertip. (c) Contact with finger center.

(a) (b) (c)
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 The ridge pattern is designed with multiple intervals in order not to generate a single 
resonance frequency.  This is essential because time domain data are also used in the 
classification instead of using only the frequency domain data.  If the ridge spacings are 
uniform, the signal at a particular frequency can resonate, and regions of other frequencies are 
blurred.(25)  That means the loss of information in the time domain data.  Then the classification 
of the surface may not be easy.  Hence, the ridges of the patterns were formed with uneven 
distances of 0.9, 1, and 1.1 mm to produce different vibratory signals from one input.  
 To facilitate the role of a fingerprint structure, a silicone material was adopted.  Firm 
silicone is preferred for a structure to detect a ridged texture effectively.  Also, it must be 
resistant to external chemical damage or contamination.  Most importantly, it should sustain 
a constant response to horizontal forces in a situation where the sensor is rubbed against a 
surface.  Polydimethylsiloxane (PDMS) was considered the most suitable silicone material to 
satisfy our requirements.(29)  Thus, the fingerprint structure of the developed sensor was made 
using PDMS (Sylgard 184, Dow Corning).  A fingerprint mold was fabricated using a 3D printer 
(Object24, Stratasys) to form the PDMS into a fingerprint shape.  VeroWhitePlus material was 
used for the mold, as shown in Fig. 2(a).  The PDMS was poured into the mold then cured at 
room temperature for 24 h.
 The sensing element installed under the fingerprint structure is made of a piezoelectric 
material.  Piezoelectric materials convert the vertical vibration signal received from the 
fingerprint structure into a voltage signal.  Hidaka et al. placed a fingerprint structure on the 
outside and a sensing element inside to fabricate a sensor.(30)  However, they observed the low-
frequency band with a strain gauge.  A sensing mechanism that measures high-frequency 
signals, such as one made of piezoelectric material, is advantageous to simulate the RA 
receptor.  A PVDF film was used as the piezoelectric material.  PVDF film is freely molded and 
has flexible properties at small thickness.  The PVDF film was polarized in the d33 direction 

Fig. 2. (Color online) Manufacturing process of the sensor. (a) 3D printed mold for fingerprint structure. (b) 
PDMS fingerprint structure. (c) Fabricated sensor attached to the curved tip.
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for high sensitivity along with vertical vibration.  The whole surface of the PVDF film was 
coated with graphite to form an electrode.  The PVDF film was 100 µm thick.
 A sensor was fabricated by combining the PDMS fingerprint structure and PVDF sensing 
elements.  The molded PDMS was cut along the dashed line shown in Fig. 2(b).  The cut PDMS 
structure was attached to PVDF film with silicone tape.  The sensor attached to the curved tip 
is shown in Fig. 2(c).  The voltage signal output from the sensor was passed through an analog 
filter and then measured through a data acquisition (DAQ) instrument at a 1 kHz sampling 
frequency (PXI 4472B, NI).  The differential amplifier had a gain of 10, and a voltage follower 
was installed to reduce noise.  A low-pass filter with a cutoff of 50 Hz was set at the rear end.  
The signal was collected with LabVIEW.

2.2	 Texture	identification

 The developed sensor rubs the target surface and receives a vibration signal in the form of a 
voltage.  Vibration signals are time-series data, and signal processing is essential to distinguish 
surfaces through them.  The determination of the critical parameter that represents the texture 
information is important.  Hence many groups have extracted features from sensor output 
data by various methods.  Fishel and Loeb adopted an active classification approach to the 
problem of surface identification using artificial fingers sliding over surfaces.(31)  They selected 
three distinct properties, traction, roughness, and fineness, that could be used for surface 
identification.  Also, they developed a feature extraction method to map the measured dragging 
forces in their linear stage and the vibrations of the finger.  Chathuranga and co-workers 
used the covariance of values obtained from two accelerometers as the feature and conducted 
classification work using signal processing.(32,33)  Dallaire et al. used seven features from the 
signal found through a statistical approach.(24)  
 In the present study, four features are selected using only the vibration signal from surface 
contact.  When distinguishing textures, it is advantageous to use features related to not only the 
frequency domain but also the time domain.(34)  Observing the signal in the frequency domain 
reveals the periodicity of the surface.  Conversely, by observing the signal in the time domain, 
aperiodic information on the surface can be obtained.  In the frequency domain, the spectral 
centroid is used; then, the variance, skewness (third moment), and kurtosis (fourth moment) are 
also used to represent a surface’s characteristics in the time domain.
 The spectral centroid and principal frequency are mainly used to generalize signals in the 
frequency domain.  The spectral centroid characterizes a signal in the frequency domain, 
providing a broader representation of the overall frequency signal than the principal frequency.  
The principal frequency does not represent all the components of the texture; since only the 
most characteristic frequency is used, the other details are ignored.  The spectral centroid, 
however, does not ignore other details of signals, and most of the characteristic frequencies 
have a significant impact.  For this reason, the spectral centroid is used to identify the overall 
composition of the surface texture.
 The variance, skewness, and kurtosis are obtained from a signal in the time domain.  The 
variance represents the roughness of the surface.  Since a piezoelectric signal is a pair of 
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positive and negative signals, the average value of the signals does not represent the strength of 
the signal.  However, the variance represents the distance from the average, regardless of the 
sign.  Therefore, it can represent the intensity of the signal, in other words, the roughness of the 
surface.  The skewness represents the symmetry of the signal. For example, a large absolute 
value of skewness appears on a surface that becomes rougher in one direction.  It is possible to 
know whether there is a trend in the change on a surface through the value of skewness.  The 
kurtosis is a measure of how outlier-prone a distribution is.  A surface with irregularities can be 
distinguished by using the kurtosis.  For example, sparsely populated surfaces with large bumps 
have large values of kurtosis.

3. Experiments

 We performed two experiments.  The first experiment was to confirm that the wave 
and circle patterns give different results.  A wave-pattern sensor and a circle-pattern sensor 
were fabricated, and the test samples were then measured by each sensor.  The results were 
compared, and it was examined whether the two patterns created signals with distinct 
characteristics.  In the second experiment, unlike the first experiment in which each pattern 
was used independently, a sensor in which the two patterns were used together was tested.  If 
two fingerprint patterns are used in one sensor, they are bound to be affected by each other.  
We checked whether using the two patterns together can help to distinguish the surface despite 
interference.
 The experimental apparatus, shown in Fig. 3, was configured to set the contact force when 
sliding begins.  The linear guide ensures that the sensor maintains a stable constant velocity.  
The contact force was set to 1.5 ± 0.2 N, a value that has been used in many studies to allow 
stable sliding.(35,36)  The constant velocity of the linear stage was set to 72 mm/s.  Each sample 
was tested ten times.
 Surfaces with various characteristics are needed to check whether the developed sensor can 
effectively distinguish surfaces.  Hoelscher et al. set the following conditions on an object to 
evaluate an algorithm they developed.(37)  The object should be made of one material, be large 
enough to be scannable, have a flat shape, and not be so sharp as to damage the silicone.  We 

Fig. 3. (Color online) Experimental apparatus used in experiments.
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selected nine surfaces with repetitive and nonrepetitive patterns that satisfied these conditions, 
as shown in Fig. 4.  Sample #1 is an acrylic plate that has a flat, defect-free surface.  Sample #2 
(felt) has a soft surface.  Sample #3 is a Korean traditional paper (Hanji), which is soft but has a 
complex surface texture owing to the wood tissue used.  Samples #4, #5, and #6 are materials 
with rough surfaces: sample #4 is a towel, sample #5 is a loofah, and sample #6 is a synthetic 
sponge.  Sample #7 is a wood sheet.  Sample #8 is corrugated cardboard and sample #9 is silver 
dots, with both having a homogeneous geometry.

3.1	 Experiment	1:	distinct	data	from	different	patterns

 The nine selected surfaces were identified by the sensors with wave and circle ridged 
patterns.  The fabricated patterns are shown in Figs. 5(a) and 5(b).  Through this experiment, 
it was confirmed that the obtained signals were different for the different patterns.  This is 
because the amplified vibration signal depends on how the different ridged patterns interact 
with the same material surfaces.  The results for the two patterns are shown in Table 1.  Each 

Fig. 5. (Color online) Sensors with three types of the fingerprint pattern. (a) Wave pattern. (b) Circle pattern. (c) 
Hybrid pattern.

Fig. 4. (Color online) Nine kinds of the common material used in experiments.

(a) (b) (c)
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pattern was analyzed to obtain the spectral centroid, variance, skewness, and kurtosis.  The 
experimental data are average values of ten measurements from each surface.
 This result shows how the wave fingerprint pattern and the circular fingerprint pattern 
show different results.  The correlation coefficients between the two patterns are as follows: 
spectral centroid 0.7115; variance 0.7443; skewness 0.4013; kurtosis 0.9067.  The closer to 1 the 
correlation coefficient is, the more direct the proportionality, and the closer to 0, the weaker 
the relationship.(38)  There is a strong correlation since the two fingerprint patterns measure the 
same contact surface in the sensor of the same structure.  However, the two patterns do not give 
the same result.  
 Looking at the results for the wave-pattern sensor, it can be seen that the nine samples 
generally have different values and can be easily distinguished clearly.  The exceptions are 
samples #5 and #6, which are difficult to distinguish except by the skewness.  The circle-pattern 
sensor is also able to distinguish the nine samples in general.  However, samples #2 and #3 have 
similar feature values, except for the skewness.  These results are reasonable because samples 
#2 and #3 and samples #5 and #6 have physically similar textures.  However, to improve the 
performance of the tactile sensor, more accurate distinction is needed.  The wave-pattern 
sensor distinguishes better between samples #2 and #3 because it shows a larger difference in 
skewness.  The circle-pattern sensor has different spectral centroid and skewness values for 
samples #5 and #6, making this sensor better for their classification.
 These results confirm that the vibration patterns depend on the geometry of the fingerprint 
structure.  The geometry may be favorable or adverse depending on the object surface.  If 
the results of the two fingerprint patterns are used, better classification performance can be 
obtained.  However, this requires two sensors and two active touches.

3.2 Experiment 2: application of hybrid sensor

 A better way to distinguish the surface is to install two fingerprint patterns on one sensor; 
then the surface can be well distinguished with one active touch.  As shown in Fig. 5(c), a 

Table 1
Experiment 1 results for samples with the two types of pattern. All values are averages of ten experiments for each 
sample.

Sample 
number

Wave pattern (sensor 1) Circle pattern (sensor 2)
Spectral 
centroid 

(Hz)

Variance 
(V 2)

Skewness 
(a.u.)

Kurtosis 
(a.u.)

Spectral 
centroid 

(Hz)

Variance 
(V 2)

Skewness 
(a.u.)

Kurtosis 
(a.u.)

#1 20.49 0.036  −0.099  2.86 14.18 0.032  0.057  2.99
#2 20.98 0.083  −0.636  6.18 15.76 0.054  −0.357  4.31
#3 21.08 0.080  −0.063  6.61 16.50 0.049  −0.026  3.47
#4 22.17 0.161  −0.405  8.34 19.97 0.065  −0.396  7.01
#5 24.50 0.307  −0.041  12.45 22.03 0.185  0.051  12.25
#6 24.51 0.349  −0.162  13.37 20.37 0.095  −1.539  11.11
#7 23.31 0.056  −0.162  3.59 12.17 0.031  0.052  2.96
#8 25.69 0.198  0.093  8.66 22.77 0.031  −0.216  3.93
#9 24.51 0.282  0.766  7.22 24.55 0.096  0.291  5.56
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hybrid pattern sensor was manufactured to check the degree of interference that may occur.  
The substrate of the wave pattern and circle pattern of the hybrid sensor have the same size, 
and the vibrations from the surface are acquired at the same time by both parts of the sensor.  
The left blue rectangle is the part of the sensor with a wave pattern (referred to as sensor 1 for 
convenience) and the right red rectangle is the part with the circle pattern (sensor 2).
 Figure 6 presents surface information measured with the hybrid sensor.  The x-axis 
corresponds to data from sensor 1 and the y-axis corresponds to data from sensor 2.  The basic 
signal detection of the hybrid sensor unit is less sensitive than that when the wave- and circle-
pattern sensors are used individually.  This is because the interference between the patterns may 
not be eliminated completely.  However, the hybrid sensor is advantageous when interpreting 
the measured signal to identify textures.  For example, in Fig. 6(a), we can see that according 
to sensor 1, samples #1 and #3 have similar textures since the sensor outputs are in the range 
from 15 to 18, whereas according to sensor 2, they have considerably different textures.  
Consequently, the proposed hybrid sensor offers better texture identification capability owing to 
the enhanced interpretation of combined signals.

Fig. 6. (Color online) Experimental results for hybrid fingerprint-patterned sensor. The x-axis is the signal from 
the wave part of the hybrid sensor and the y-axis is the data from the circle part. (a) Spectral centroid of the surface, (b) 
variance, (c) skewness, and (d) kurtosis. The dotted lines in (c) and (d) correspond to a normal distribution of data.
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 As demonstrated with the example, the proposed sensor can differentiate surface texture 
through a characterization process as follows.  Data sets are first sorted on the basis of the 
spectral centroid to categorize the surfaces, as shown in Fig. 6(a).  However, in this process, 
there are overlapping classes: samples #4 and #7 are not clearly differentiated, and neither are 
samples #5, #6, and #8.  Next, the variance can help distinguish between samples #4 and #7.  
With sensor 1, sample #4 (marked with inverted triangles) has a variance of about 0.14, whereas 
sample #7 (right triangles) has a variance of about 0.07.  Therefore, the two sets can be clearly 
separated from each other.  Skewness and kurtosis can also be used to improve accuracy.  A 
similar approach is applied to classify samples #5, #6, and #8.  Sensor 2 gives variance values of 
0.29, 0.13, and 0.06, respectively.  In addition, inspecting the kurtosis of each sample increases 
the decision accuracy.  With sensor 1, samples #5, #6, and #8 can be distinguished from their 
kurtosis values of 16.8, 11.3, and 8.7, respectively.  If either sensor 1 or sensor 2 were used 
alone, it would be much more difficult to distinguish the textures.  Therefore, we can see that 
the proposed hybrid sensor enhances the surface texture identification performance despite its 
small form factor.
 In this work, the Davies–Bouldin index,(39) Dunn index,(40) and silhouette index(41) were 
used to evaluate the sensors.  Clustering evaluation methods have been used for quantitative 
evaluation of the discrimination performance of sensors to determine how well different groups 
are distinguished from each other.  If the measurement with the hybrid sensor is better for 
identification than that with the individual sensors, the texture discrimination performance will 
also be better.
 Table 2 shows the results of evaluating each sensor.  The lower the Davies–Bouldin index, 
the better the performance, whereas the higher the Dunn and silhouette indices, the better the 
performance.  As shown in the table, the hybrid sensor shows better results than the individual 
sensors in terms of the Davies–Bouldin and silhouette indices, whereas the circle-pattern sensor 
shows better overall results than the hybrid sensor in terms of the Dunn index.  However, the 
overall results of the three sensors do not show a significant difference.  Unlike other metrics, 
the Dunn index uses only the largest intracluster distance and the smallest distance between 
the two clusters.  As a result, the degree of similarity of an extreme group is used instead of 
the similarity of an average group.  Thus, the accuracy tends to decrease as the number of 
groups increases.  Since there are nine groups in this experiment, some results are evaluated 
poorly by the Dunn index.  In contrast, the Davies–Bouldin and silhouette indices show that 
the hybrid sensor is superior to the single-pattern sensors.  The above two evaluation methods 
use the average of the dissimilarity calculated from each group.  Hence, they show results that 
reflect more data.  From these results, it can be seen that a hybrid sensor is more effective at 
distinguishing each texture than individual single-pattern sensors.

Table 2
Evaluation results for each measurement of sensors. 
Index (better criteria) Davies–Bouldin (min) Dunn (max) Silhouette (max)
Hybrid 0.752 0.0413 0.642
Circle 1.813 0.0436 0.475
Wave 1.227 0.0376 0.463
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4. Conclusions

 In this paper, we proposed a hybrid sensor with two distinct patterns of its ridged structure; 
these patterns mimic different parts of a human fingerprint.  The developed tactile sensor can 
successfully distinguish various surface textures.  It uses the vibration signal that is generated 
when the sensor rubs against the surface of an object.  Each fingerprint-patterned structure 
generates different vibration signatures when rubbed.  Using two different patterns in the ridged 
structure of the sensor improves its discrimination accuracy.
 Human sensory receptors were simulated with a biomimetic approach when fabricating 
these sensors.  PDMS was used to simulate skin and its fingerprint structure, which converts 
horizontal vibrations into vertical vibrations.  Molds with different fingerprint patterns were 
printed, with the designed fingerprint structure being formed in PDMS.  A piezoelectric sensing 
element was used to simulate the RA mechanoreceptors beneath human skin.  Vibrations were 
measured using the piezoelectric properties of the PVDF film attached under the PDMS ridged 
fingerprint structure to mimic the human sensory system.
 Experiments were conducted to confirm the operation of the developed sensors.  Two sensors 
with different single-pattern fingerprint structures were fabricated to measure the surfaces 
of nine objects.  It was confirmed that the different fingerprint structures generate different 
vibration signals.  We then confirmed that a hybrid sensor with both types of fingerprint 
structure is better than the single-pattern sensors in distinguishing the textures.  Davies–
Bouldin, Dunn, and silhouette indices were used for the evaluation.  The hybrid sensor had 
slightly inferior performance to the circle-pattern sensor in terms of the Dunn index but superior 
performance in terms of the Davies–Bouldin and silhouette indices.  It was thus confirmed that 
the hybrid sensor is better at distinguishing textures than the sensors with a single pattern type.
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