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 Currently, to achieve the optimal thermal comfort for a given occupant, the optimal indoor 
air temperature should be set by the occupant himself/herself.  Then the air conditioner can be 
used to control the actual indoor air temperature so that it converges to the optimal temperature.  
In this study, we develop a method for predicting the optimal indoor air temperature; thereby, 
the air conditioner can be adjusted automatically without the involvement of the occupant.  We 
first apply the predicted mean vote (PMV) model to describe the relationship between the 
indoor air temperature and the occupant’s thermal comfort.  We then adopt the deep learning 
method to obtain two deep neural network models, which are used to predict the optimal indoor 
air temperature.  One is the regression model and the other is the classification model.  We test 
these models and the results show that the mean average error is about 0.1 ℃, which satisfies 
the accuracy requirements of practical systems.

1. Introduction

 In recent years, with the development of information technologies such as Internet of Things, 
cloud computing, and artificial intelligence, the smart home industry has made rapid advances 
and has a promising future.(1)  Strategy AnalyTIcs reported that the smart home market is 
expected to reach $62 billion by 2020.(2)

 At present, in smart home systems, many appliances such as electric curtains are intelligent 
enough to be controlled remotely by occupants via mobile apps.  Although people can be freed 
from the daily switching actions to control appliances with the help of these mobile apps, they 
still need to make decisions on the actions of the appliances.  Hence, the research on using a 
machine to learn the occupants’ habits and preferences through collected data and then to make 
decisions for the occupants becomes very meaningful.
 It is reported that human beings spend 80% of their time in their houses.  A comfortable 
indoor environment can greatly improve the quality of life and make people healthier.  One 
important way to improve indoor comfort is to adjust the indoor air temperature via an air 
conditioner to obtain optimal thermal comfort.  One important issue is how to determine the 
optimal indoor air temperature.  There exist some works on this topic.  Zhang developed a 
thermal comfort model with the BP neural network, which can be used to predict indoor thermal 
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comfort.(3)  She further proposed an improved particle swarm optimization (PSO) algorithm to 
optimize the thermal comfort model.  Cao also used a neural network to construct a thermal 
comfort model and proposed a fuzzy controller.(4)  With this thermal comfort model, he finished 
the simulation work to verify the effectiveness of the fuzzy controller, using the predicted mean 
vote (PMV) to evaluate the performance of the closed-loop control systems.
 Thermal comfort is a subjective evaluation index.  In the same environment, different people 
have different comfort experiences.  Currently, there has been no work on thermal comfort 
for personalized demands of a given occupant in a smart home.  Therefore, in this work, we 
consider this problem and propose a deep-learning-based method to establish a thermal comfort 
model for a given individual occupant.  The model is used to predict the indoor air temperature 
expected by the occupant and then the air conditioner is regulated to achieve the optimal indoor 
air temperature.

2. Problem Statement

 The existing results show that thermal comfort is mainly determined by the following 
factors: environmental factors, including air temperature, air relative humidity, air speed, 
and mean radiant temperature, and personal factors, including metabolic rate and clothing 
insulation.  As we all know, the PMV was developed by Povl Ole Fanger to model the average 
thermal comfort of a large group of people on the seven-point scale of thermal sensation, as 
shown in Fig. 1.(5)  The PMV model is often used to describe the relationship between these 
factors and the thermal comfort as

 ( ), , , , ,a r cl aPMV f M t t I v ϕ= , (1)

where M denotes the metabolic rate, ta denotes the air temperature, tr denotes the mean radiant 
temperature, Icl denotes the clothing insulation, va denotes the air speed, and φ denotes the 
relative humidity.  
 Among these factors, the air temperature ta is the principal factor.(6)  Therefore, in this paper, 
we optimize the thermal comfort for a given occupant by adjusting the indoor air temperature 
via an air conditioner.  That is, the absolute value of individual thermal comfort is minimal.  
When we apply the PMV to model a given occupant’s thermal comfort, the model of the given 

Fig. 1. PMV model.
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occupant’s thermal comfort should be slightly different from the PMV model and is denoted as

 ( ), , , , ,i i a r cl aPMV f M t t I v ϕ= . (2)

 The problem that we want to solve is how to determine the optimal indoor air temperature 
*
at  to ensure that the given occupant acquires the optimal thermal comfort.  The problem is 

formally stated as follows.
 Problem 1: For a given occupant i and the given metabolic rate M , mean radiant temperature 

rt , clothing insulation clI , air speed av , and relative humidity ϕ , find the optimal indoor air 

temperature *
at , such that the occupant’s individual thermal comfort is optimal as follows.
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 In practical systems, some factors such as metabolic rate and clothing insulation are 
difficult to determine and thus solving the problem becomes difficult.  However, we know 
that people have different metabolic rates that may fluctuate depending on their activity level 
and environmental conditions.(7)  Clothing insulation is mainly determined by the individual 
clothing situation  related to the season, weather, and outdoor temperature.  The mean radiant 
temperature approximately equals the current air temperature in houses.(8)  In an indoor 
environment, the air speed is mainly determined by the wind speed of the air conditioner.  With 
such knowledge, we can use the individual activity level Ac, season Se, weather We, outdoor 
temperature to, current indoor air temperature ti, indoor humidity Hi, and air conditioner wind 
speed Ws to indirectly reflect the effects of those factors on thermal comfort as

 ( ), , , , , , ,i i c e e o i i s aPMV g A S W t t H W t= . (4)

Problem 1 is then translated to the following optimization problem.
 Problem 2: For a given occupant i and the individual activity level cA , season eS , weather 

eW , outdoor temperature ot , current indoor air temperature it , indoor humidity iH , and air 

conditioner wind speed sW , find the optimal indoor air temperature *
at  to make the individual 

thermal comfort optimal as follows.
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Problem 2 is still difficult to solve because it is difficult to obtain the formulaic description of 
the function ( )ig i .

3. Deep Neural Network Model

 In order to solve Problem 2, we construct an individual thermal comfort model with deep 
neural networks.  The input of the model is the individual activity level, season, weather, 
outdoor temperature, current indoor air temperature, indoor humidity, and air conditioner wind 
speed.  The output is the optimal indoor air temperature.

3.1 Data collection

 We adopt the supervised learning method to train the neural network model.(9)  One key task 
is to collect the labeled data obtained from an office used as a benchmark.  The overall layout of 
the office and the sensor distribution are shown in Fig. 2.  The office is divided into a study area 
and a rest area.  In the office, there are human motion sensors, temperature sensors, humidity 
sensors, a smoke alarm, an illuminance sensor, a door/window sensor, and a video sensor.

Fig. 2. (Color online) (a) Room layout and (b) sensor map of the benchmark office.

(a) (b)
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 The outdoor temperature is measured using temperature sensor t1 and the current indoor 
air temperature is measured using temperature sensor t0.  The relative humidity in the office 
is measured using humidity sensor h0.  The illuminance is measured using illuminance sensor 
i0.  The indoor illuminance under different conditions is shown in Table 1.  The activity level of 
the occupant can be determined with reference i0.  When i0 is less than 10 lux, the user is in the 
state of rest.  When i0 is more than 15 lux, the user is in the state of work.
 According to the climatic characteristics of Shanghai, spring is from March to May, 
summer is from June to September, autumn is from October to November, and winter is from 
December to February.  The weather data is obtained from the Internet.  The weather has the 
following four conditions: sunny, cloudy, rainy, and snowy.  The air conditioner wind speed 
data is obtained using a Broadlink Smart Remote Controller with four levels, namely, auto, low, 
middle, and high.
 The output of the model is the optimal indoor air temperature.  After learning, the 
temperature determined by the model will converge to that expected by the occupant so that the 
model can set the temperature input of the air conditioner automatically.

3.2 Data processing

 The following are the input variables in the neural network: continuous variables, including 
outdoor temperature, current indoor air temperature, and indoor humidity, and discrete 
variables, including season, weather, and individual activity level.  For the continuous variables, 
we use the Z-score standardization method to deal with the sampling data.  

 
xz µ
σ
−

=  (6)

Here, μ and σ are the mean and variance of the original data, respectively, x is the original data, 
and z is the data after normalization.
 For these discrete variables, we use the one-hot encoding method to process the sampling 
data.  The results are summarized in Table 2.  
 There are two different methods to process the output data.  The first method is to normalize 
the output by Z-score standardization.  Then, how to formulate an individual thermal comfort 
model becomes a regression problem.  Considering that we set the air conditioner temperature 
in steps of 1 °C, we can also use the one-hot encoding method to process the output data, as 
shown in Table 3.  Then, how to formulate an individual thermal comfort model becomes a 

Table 1
Indoor illuminance under different conditions.

Curtain Light source Ceiling lights Indoor illuminance 
(lux)

Meet lighting
needs at work

Open Sunshine All off >70 Yes

Closed
None All off 7 No

Ceiling light One on one off 9 No
Ceiling light All on 19 Yes
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classification problem.  Using the two different processing methods, we will construct the 
corresponding neural network model.

3.3 Model building

In this study, on the basis of the backpropagation algorithm, we adopt the deep neural 
network(10,11) to construct the individual thermal comfort model for predicting the optimal 
indoor air temperature.  A neuron is the basic unit of a neural network as

 
1
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n

i i
i

a f x bω
=

= +∑ , (7)

where x [x1, x2, ..., xn] is the input vector, ω [ω1, ω2, ..., ωn] is the weight vector, b is the bias, and 
a is the output of the neuron.
 In the neuron, we call f(μ) the activation function.(12)  Activation functions are used to 
introduce nonlinearity to neural networks.  The popular activation functions include the sigmoid 
function [ f(µ) = 1/(1 + e−µ)], hyperbolic tangent (tanh) function [ f(µ) = tanh(µ)], and rectified 
linear unit (ReLU) function [ f(µ) = max(µ, 0)].
 Neural networks are typically organized in layers.  Each layer is made up of a number 
of interconnected neurons.  Patterns are presented to the network via the input layer, which 
communicates to one or more hidden layers where the actual processing is done via a system of 
weighted connections.  The hidden layers link to an output layer that outputs an answer.
 The classification neural network model built in this study is shown in Fig. 3.  The input is 

Table 2
One-hot encoding of discrete input variables.
Variable One-hot encoding

Season Spring Summer Autumn Winter
1000 0100 0010 0001

Weather Sunny Windy Rainy Snowy
1000 0100 0010 0001

Air conditioner
wind speed

Auto Low Mid High
1000 0100 0010 0001

User status Work Rest
10 01

Table 3
One-hot encoding of discrete output variables.
Variable One-hot encoding

Output 
temperature

18 °C 19 °C 20 °C 21 °C
100000000000 010000000000 001000000000 000100000000

22 °C 23 °C 24 °C 25 °C
000010000000 000001000000 000000100000 000000010000

26 °C 27 °C 28 °C 29 °C
000000001000 000000000100 000000000010 000000000001
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a 17-dimensional feature vector.  The output is a 12-dimensional feature vector representing 
the one-hot code of the temperature range from 18 to 29 ℃ as shown in Table 3.  The number 
of hidden layers and the number of neurons in each layer will be determined by the grid 
search method.(13)  The feature vector of the input layer of the regression model is the same 
as that of the classification model.  The output of the regression model is a one-dimensional 
vector representing the expected temperature of the occupant, which is the optimal indoor air 
temperature.  Similarly, the number of hidden layers and the number of neurons in each layer 
will be determined by the grid search method.
 We select one part of the labeled sampling data as a training set to train the deep neural 
network.  Training is the process of adjusting the weights and offsets of the neural network.  
During the training process, the cost function C(ω,b) is used to evaluate the error between 
the true value and the output value of the neural network.  The goal of training is to minimize 
C(ω,b), which is implemented by the gradient descent method to update the weight and bias 
iteratively as

 ( , ) ( , ),     C b C bb b
b

ω ωω η ω η
ω

∂ ∂′ ′− → − →
∂ ∂

, (8)

where η is the learning rate.  The learning rate determines how quickly or how slowly to 
update the parameters.  When the training set is very large, we use the minibatch method(14) to 
accelerate the training process.  The minibatch gradient descent is a variation of the gradient 
descent that splits the training set into small batches to calculate model error and update model 
coefficients.

Fig. 3. Classification neural network model.
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4. Experiment Analysis

 We collected 12 days’ worth of data from August 3, 2018 to August 14, 2018 at a 1 min 
sampling interval.  The total number of samples is 7305.  We randomly divide the data into 
training set S (90% of the collected data) and test set T (10% of the collected data).  Before we 
train a neural network, we need to determine some hyperparameters including the number of 
layers (L) of the neural network, the number of neurons ( j) in each hidden layer, the size of a 
minibatch, the number of epochs, the activation function of neurons, and the cost function.  
Hence, we adopt the method shown in Fig. 4 to complete the experiment.
 As shown in Fig. 4, we first find the optimal hyperparameters, including the number of 
layers (L) of the neural network, the number of neurons ( j) in each hidden layer, the minibatch 
size, and the number of epochs by the grid search method.  With the optimal hyperparameters, 
we then retrain the model with training set S to obtain a neural network model.  Finally, we test 
the model with test set T to verify its effectiveness.

4.1 Regression model

 Before we perform the experiment, we should determine the activation function of neurons 
and the cost function.  The vanishing gradient problem is one of the major problems for both the 
sigmoid function and the tanh function.  However, the ReLU activation function can overcome 
this difficulty.  Hence, we choose the ReLU activation function for neurons in the input layer 
and hidden layers of the regression neural network.  The regression model does not need to 
classify the prediction result, so the output layer does not set the activation function and directly 
outputs the value.

Fig. 4. (Color online) Flow chart of experiment.
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 We choose the mean square error (MSE) as the cost function.

 �( )2
1

1 n

i i
i

L y y
n =

= −∑  (9)

Here, yi denotes the true value, that is, the temperature value for the air conditioner set by the 
given occupant and can be obtained using the Broadlink Smart Remote Controller.  �ly  denotes 
the predicted value of the neural network.
 Even though minibatch gradient descent takes the best of both batch gradient descent 
and stochastic gradient descent, it does not guarantee good convergence and it is difficult to 
choose a proper learning rate.(15)  There are many improved approaches such as Momentum,(16)  
Adagrad,(17) Adadelta,(18)  RMSprop,(19) and Adaptive Moment Estimation (Adam).(20)  Among 
these approaches, Adam computes adaptive learning rates for each parameter.  In addition to 
storing an exponentially decaying average of past squared gradients, similarly to Adadelta and 
RMSprop, Adam also keeps an exponentially decaying average of past gradients similar to 
momentum.  Furthermore, Adam has a relatively high convergence speed.  In this study, we 
choose the Adam algorithm to update the weights and offsets.
 We use the grid search method to search for the optimal solution of the number of hidden 
layers of the model, the number of neurons in each hidden layer, the minibatch size, and the 
number of epochs.  The parameter list is shown in Table 4.  The grid search method is used to 
systematically traverse a variety of parameter combinations and determine the best parameters 
by cross-validation.(21)  When the sampling data is insufficient, to make full use of the data set 
to test the algorithm performance, we divide the training set S into k packets, one of which is 
used as a test set each time, and the remaining k − 1 packets are used as the training set.  Here, 
we set k = 10.
 The results show that when the number of neurons in the hidden layers is [120, 100, 80, 60, 
40, 20], the number of epochs is 200, and the batch size is 20, the model is optimal.
 The results of the tenfold cross-validation of the models with the optimal hyperparameters 
are shown in Fig. 5.  The blue curve is the loss value (i.e., MSE) of the model on training set Ss, 
and the green curve is the loss value on test set St.
 The evaluation results (MSEs) of the ten models are shown in Table 5, and the average of the 
evaluation results is 0.0933.

4.2	 Classification	model

 Similarly, we choose the ReLU activation function for neurons in the input layer and hidden 
layers of the classification neural network.  Because the output unit of the classifier requires the 

Table 4
Parameter list of grid search method.
Parameters List
No. of neurons [80, 60, 35, 12] [100, 80, 60, 40, 20] [120, 100, 80, 60, 40, 20] [140, 120, 100, 80, 60, 40, 20]
No. of epochs 100 130 160 200
Batch size 5 12 20 30
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softmax activation function to perform numerical processing, we choose the softmax activation 
function for neurons in the output layer as

 
i

i

V

i C V
i

eS
e

=
∑

, (10)

where Vi denotes the output of the prestage unit of the classifier, i denotes the category index, 
C denotes the total number of categories, and Si denotes the ratio of the index of the current 
element to the exponential sum of all elements.  Corresponding to the softmax activation 
function, we choose the categorical cross entropy as the cost function of the classification model 
as

 ( ), ,
1 1

1 log
n m

i j i j
i j

L t p
n = =

= − ∑∑ , (11)

where n is the number of samples, m is the number of categories that is equal to 12, 

,1 ,2 ,, , ,i i i i mt t t t = …  is a 12-dimensional one-hot code that represents a true temperature set by 
the occupant, and pi,j denotes the prediction value of the jth output of the neural network.
 The results show that when the number of neurons in the hidden layers is [120, 100, 80, 60, 
40, 20], the number of epochs is 200, and the batch size is 20, the model is optimal.  Different 
from the regression model, we use accuracy to evaluate the performance of the classification 
model as

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. (Color online) Tenfold cross-validation evaluation results of regression model.

Table 5
Tenfold cross-validation evaluation results of regression model.
Model a b c d e f g h i j
Score 0.1002 0.1076 0.0813 0.1127 0.0962 0.0761 0.0998 0.0886 0.1051 0.0655
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 TPaccuracy
T

= , (12)

where T is the number of all the samples and TP is the number of samples whose output is equal 
to the output of the neural network.
 The results of the tenfold cross-validation of the models with the optimal hyperparameters 
are shown in Fig. 6.  The blue curve is the accuracy of the model on training set Ss, and the 
green curve is the accuracy on test set St.
 The evaluation results (accuracies) of the ten models are shown in Table 6, and the average of 
the evaluation results is 0.8751.

4.3 Model prediction

 With the optimal hyperparameters obtained as described in the above subsections, we train 
the regression neural network model for 264 s and the classification neural model for 315 s 
with training set S, and obtain the thermal comfort model.  We use test set T to evaluate its 
performance.
 The output of the regression model is a decimal value.  However, the temperature setting of 
the air conditioner is an integer.  We round off the prediction value of the regression model and 
take it as the final prediction value.  The MSE of the regression model on test set T is 0.133.  The 
accuracy of the regression model on test set T is 0.876.  The accuracy here only indicates that 
87.6% of the predicted values are equal to the true values.  In order to evaluate the performance 
of the model, we calculate the mean absolute error (MAE) of the model as

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. (Color online) Tenfold cross-validation evaluation results of classification model.

Table 6
Tenfold cross-validation evaluation results of classification model.
Model a b c d e f g h i j
Score 0.8556 0.8632 0.8891 0.8663 0.8630 0.8798 0.8798 0.8630 0.8782 0.9132
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where n denotes the number of samples, yi denotes the output value of samples, and �ly  denotes 
the prediction value of the neural network.  The MAE of the model on test set T is 0.127, which 
means that the average error between the predicted optimal indoor air temperature and the true 
optimal indoor air temperature is 0.127 ℃.  This result shows that the model has high prediction 
accuracy.  There are only two samples with an absolute error greater than 1 ℃.  Therefore the 
performance of the model is very stable.
 From the output of the classification model, we can obtain the prediction value using data 
in Table 3.  The MSE of the classification model on test set T is 0.138.  The accuracy of the 
classification model on test set T is 0.882.  The MAE of the model on test set T is 0.124.  There 
are five samples with an absolute error greater than 1 ℃.  In this work, we extract the sampling 
data of the last two days, then put them into the regression and classification models.  As shown 
in Figs. 7 and 8, we compare the prediction value with the true value.  The blue dots in the 
figures represent true values, and the red dots represent prediction values.  As can be clearly 
seen from the figures, both models can track well the trend of the occupant’s expected indoor 
air temperature.

Fig. 7. (Color online) Prediction result of regression model.

Fig. 8. (Color online) Prediction result of classification model.
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5. Conclusions

 In this study, using the thermal comfort index PMV, we established two deep neural network 
models to predict the indoor air temperature expected by the occupant.  The experimental 
results show that the MAEs of two models are both less than 0.13 ℃.  The models obtained 
can be used to adjust the temperature setting of an air conditioner in real time without human 
involvement, and finally realize the personalized control of the indoor air temperature.
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