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In this study, we propose an effective cooperative carrying method for mobile robots in an
unknown environment. During the carrying process, the state manager (SM) switches between
wall-following carrying (WFC) and toward-goal carrying (TGC) to avoid obstacles and prevent
the objects from dropping. An interval type-2 recurrent fuzzy cerebellar model articulation
controller (IT2ZRFCMAC) based on dynamic group differential evolution (DGDE) is proposed
for implementing the WFC and TGC of mobile robots. The adaptive wall-following control
is developed using the reinforcement learning strategy to realize cooperative carrying control
for mobile robots. The experimental results indicated that the proposed DGDE is superior to
other algorithms and can complete the cooperative carrying of mobile robots to reach the goal
location.

1. Introduction

In recent years, mobile robot navigation control and obstacle avoidance have become
important research fields.!™ During the navigation process in an unknown environment,
a robot has to avoid colliding with obstacles and move towards a goal. In the cooperative
carrying process by multiple robots, the mobile robots assist each other to prevent an object
from dropping and colliding until they successfully complete the cooperative carrying
task. Therefore, developing the appropriate decision for mobile robots to avoid obstacles is
an important topic. Zhao designed a fuzzy controller using infrared sensors to keep robots
away from obstacles.”Y) Gavrilut and Tiponut proposed an expert fuzzy system to replace the
complex mathematical model and define the fuzzy rules, but specialists in the field are required
to establish fuzzy rules on the basis of their expertise.>) Zhu and Yang combined fuzzy logic
with artificial neural networks (ANNs) and adjusted the controller parameters through a neural
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fuzzy network so that the mobile robot can complete a navigation task.®) These methods only

consider the navigation of a single mobile robot.
(7-11)

79

In cooperative carrying by robots, scholars also use various methods to design the controller.
Chen et al. proposed a strategy for transporting an object to a goal using multiple mobile robots.
Sakuyama et al. presented a methodology for the transport of a large object by mobile robots
using small hand carts.”) The object was placed on top of the mobile robots that carry an
object toward a destination. Pereira et al. divided the robots into the leader and the follower to
complete the cooperative carrying.(lo) However, when robots encounter obstacles, it must turn
back to move in another direction, which reduces the efficiency of navigation. Yamashita et al.
adopted a path planning method to calculate the optimized route in a known environment.!')
In a real environment, the input signal contains uncertainties due to noise interferences from
the sensors. Therefore, Baklouti ef al. used an interval type-2 fuzzy neural network for solving
uncertain problems.!?

In this study, we present an effective cooperative carrying and navigation control method
for mobile robots in an unknown environment. A state manager switches between two
behavioral control modes, wall-following carrying (WFC) and toward-goal carrying (TGC),
based on the relationship between the mobile robot and the unknown environment. In order to
design a robust controller with antinoise capability, an efficient interval type-2 recurrent fuzzy
cerebellar model articulation controller (IT2RFCMAC) based on dynamic group differential
evolution (DGDE) is proposed to realize the carrying control and WFC for mobile robots. The
experimental results demonstrate that the proposed method can enable the mobile robots to
complete the task of cooperative carrying.

2. Description of Mobile Robot

The e-puck mobile robot developed by Ecole Polytechnique Fédérale de Lausanne was
adopted in this study, as shown in Fig. 1(a). The mobile robot has been applied to various
studies, such as signal processing, robot control, swarm intelligence, coordinated motion, and
human—computer interaction.
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Fig. 1. (Color online) The e-puck mobile robot architecture.
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The e-puck is a two-wheeled mobile robot with an axle diameter of 4 cm, a height of 5 cm,
and a maximum speed of 15 cm per second. The robot contains 8 infrared sensors So—S7 that
are distributed around the robot, as shown in Fig. 1(b). The sensors on the right side of the robot
are mounted at 10, 45, 90, and 135°. Each infrared sensor can detect a distance between 1 and 5
cm.

3.  Wall-following Control of Mobile Robot

In this section, the proposed IT2ZRFCMAC based on DGDE is demonstrated to realize wall-
following control. The DGDE algorithm is used to adjust the parameters of the IT2ZRFCMAC
during the learning process.

3.1 IT2RFCMAC

Recently, ANNs have been widely applied to various fields.'>'”  Albus proposed the
cerebellar model articulation controller (CMAC) in 197529 The CMAC architecture mimics
the human cerebellum and has the advantages of reliable learning ability, simple structure, and
easy realization.

Figure 2 shows the structure of IT2RFCMAC. X, represents the input of IT2RFCMAC,
whereas Y7 and Yy represent the left and right wheel speeds of the robot, respectively. To reduce
the computational complexity during defuzzification, in this study, we adopted the centers of
sets (COS) to implement the reduction process.?"Y The fuzzy if-then rule can be expressed as

Rule; : IF X, is;ll,j and X, isflz’j and ...and X, is]ln’j,
M

n
1
THEN y= a0+ Ya, x",
i=1

F

A =ay +Za.,x,—
T

Ay =ay+ z i X Outputs

O~ )—wn
A3 =03+zﬂa31’.
T
Ay =ay +Za,4r,—
T

F;

Fy

Fy

OO+

E,

Ay =ay + Z"Eu x;

Layerl Layer2 Layer3 Layerd Layer5 Layer6 Layer7

Fig. 2. Structure of an IT2RFCMAC.
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where j is the rule number of the fuzzy hypercube, X; denotes the ith input, 4; j represents the
interval type-2 fuzzy set, and y denotes a Takagi—Sugeno—Kang (TSK) linear function in the
consequent layer.

The operations of the seven-layer IT2RFCMAC are described as follows.
Layer 1 (input layer): The input data set X = [X}, X>, ..., X;] is expressed as

Inputi(l)in,andi=1,2,...,n. )

Layer 2 (Gaussian membership function layer): The input data is converted into fuzzy linguistic
information in this layer, which is called fuzzification operation. Each node is defined into
an interval type-2 fuzzy set. The Gaussian primary membership function is composed of an
uncertain mean [m', m?] and standard deviation (¢). The membership degree of the Gaussian
primary membership function (#3) is expressed as the upper bound zz; and the lower bound
H 7 and defined as

2
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The output of each node is an interval [ &4 i, 2y it

Layer 3 (firing layer): Each node is a fuzzy hypercube and uses an algebraic product operation
to calculate the firing strengths ]7j(3), and is defined as

3)2[,3 /! } i=1,2, ..M, ©)
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N

A =T165). 17) =145, ")
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where 171.(3) and [](3) represent the firing strengths of the fuzzy hypercube’s upper bound and

lower bound, respectively.

Layer 4 (recurrent layer): In this layer, feedback connections are added to embed temporal
relations in the network. The output O_,-(4) is combined with the current firing strength and all
the previous fuzzy hypercubes, and is expressed as

o) =[o*.0lY]. ®)

where

©)

M
RI.
where 7 = I;/I,Z ;and ;= ﬁ(o SRE; < 1) are the recurrent weights of the current and
previous firing strengths of each rule, respectively. M is the number of fuzzy hypercubes, /11?, j
represents the random number of recurrent weight between [0,1], and 6,54)(t - 1) and g£4)(t - 1)

represent the upper bound and lower bound of the previous output 0j(4), respectively.
Layer 5 (consequent layer): This layer adopts the TSK function instead of the traditional fuzzy
inference of the consequent, and the output in layer 5 is defined as

A9 =[40.49], (10)

where

_ ! 1
A§5) - a? + zai,j X Inputi( ),
z;l (1)

5 1
A§~ ) _ a? + Zai,j x Input( ),

i
i=1

where ajo and a;; represent a constant of the TSK linear function weight, and the output Aj(s ) is
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expressed as the upper bound Afj(s ) and the lower bound Aj(s ),

Layer 6 (defuzzification layer): The traditional type-2 order reduction method is a highly
complex calculation. Thus, the type-2 fuzzy sets are converted to type-1 fuzzy sets by the type-
reduction®” method. The crisp output value [yr@, y1(6)] is obtained using a center-of-gravity
defuzzification method and is described as

M — M
(6) = ) <A O = s <A (12)
r M _ ’ M
z j=101' ) Z j:lQJ('4)

Layer 7 (output processing layer): The output is defuzzified by computing the average of yr(6)
and y,/©), and the crisp value of ') is obtained as

6
FURAES YRS (13)

3.2 Proposed DGDE algorithm

Evolutionary algorithms can solve optimization problems by imitating some aspects of
natural evolution, such as ant colony optimization (ACO),(Zz) particle swarm optimization (PSO),(23)
differential evolution (DE),** and the artificial bee colony (ABC) algorithm.?> The traditional
DE method has the advantages of reduced parameters, fast convergence, and global optimum
search ability, and has been applied in various fields successfully.?°=% However, it still has
several disadvantages, such as poor accuracy and becoming easily trapped in a local optimal
solution. To eliminate this disadvantage, an efficient DGDE algorithm is proposed to overcome
the shortcomings of traditional DE in this study. The steps of DGDE are described in detail
below.

Step 1 initialization and coding: All the parameters of each IT2RFCMAC are coded into one
vector. The coding format is presented in Fig. 3. The adjustable parameters in each fuzzy
hypercube consist of a Gaussian uncertainty mean (m'; ), standard deviation (o; ), displacement

Individual

Fuzzy Hypercube 1 Fuzzy Hypercube 2 G Fuzzy Hypercube R Ry ;

1 1 1 0
my2 01,2 dyz mz.2 02,2 dz2 ‘ my2 On,2 dnz a; a2 Qn,2

Fig. 3. Coding format of the vector.
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value of the uncertainty mean (d; ), recurrent weight (R ;), and TSK linear function weights
(@%and a; ).

Step 2 ranking the fitness values of all vectors: When the fitness value of each vector X; is
calculated, it is sorted according to the fitness value from the best to the worst. The initial
group number of all vectors is set to zero.

Step 3 vector group: The vector with the highest fitness value is set as the new group leader,
and the group number is updated to one. Then, the average distance difference and the average
fitness difference between these ungrouped particles and the group leader in group number zero
are calculated. The definition is

NP D 2
DIsE =3y, /( 8- X;) , if X Group =0, (14)

i=1 =1

Average_Distance(AD]Sg) = % , (15)
NP
FITS = Z\Fit(z,g) — Fit(X7), if X' Group =0, (16)
i=l1
Average _ Fimess( AFIT<) =118 (17)

where NP represents the number of parameter vectors, D represents the encoded dimension, L?;
denotes the jth dimension of the gth group leader, N/ is the total number of ungrouped vectors (group
number 0), and ADIS ¢ and AFIT ¢ represent the distance threshold value and fitness threshold
value, respectively, of the gth group.

The distance difference (Dis’) and fitness difference (Fit') are calculated to determine
whether the ungrouped vectors are similar to the leader vectors.

Dis' = i (5 - X;l)2 (18)
=

Fiti =|Fit (L) - Fit ( X?) (19)

If the conditions Dis' < ADIS® and Fit' < AFIT? are satisfied for a vector, then the vector is
similar to the gth group leader. These vectors are grouped and the group number is updated to g.

If any ungrouped particles exist, repeat Steps 1 to 3. The ungrouped vector with the highest
fitness value is set as the group leader in a new group (i.e., the 2nd group leader). The grouping
process is completed when no ungroup vectors exist.
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Step 4 mutation: In this study, a dynamic grouping strategy and a new mutation method are
proposed for improving the traditional DE algorithms. The modified formula of mutation is
expressed as

UiGs1= Xpest, 6 + F(XrL,G - Xrl,G) + F(sz,G - Xr3,G) , (20)

where F' is the mutation weight factor, Xp. ¢ is the best fitness vector, and X, ¢ is a random
leader selected from all the group leaders.

The traditional DE method is easily trapped into a local optimum. Therefore, the random
leader as the base vector is proposed to effectively increase the search ability. The mutated
vector in Eq. (20) revolves around the best vector and enhances the search ability in the solution
space.

Steps 5 and 6 are recombination and selection, respectively, which are the same as those in
the traditional DE method. The pseudocode of DGDE is as shown in Fig. 4.

3.3 Wall-following control of mobile robots

A reinforcement learning strategy is utilized by the IT2RFCMAC to realize wall-following
control for the mobile robot. The IT2RFCMAC has four inputs (So, S1, Sz, and S3) and two
outputs. The input S; is the distance that is measured by the infrared sensor. The outputs are
the rotational speeds V; and Vg of the two wheels. The block diagram for the wall-following
control of the mobile robot is as shown in Fig. 5.

Start
Step 1 Initialization;
Step 2 (Optimization via Dynamic Group Differential Evolution):

repeat
2.1 Calculate average distance (ADISY) and average fitness (AFITY)
Average_Distance(ADISY) = % , Average_Fitness (AFITY9) = %77

2.2 Calculate the distance (Dis?) and fitness (Fit') between individual and
leader in each group:

) N2 ) .
Dis' = 3P, /(Lf = x})", Fit' = |Fit(L9) - Fit(x")|

If(Dis’ < ADISY and Fit' < AFITY)

Classify into the same group and update the group number as g;

2.3 Mutation:
Uig+1 = Xpesee + F(Xrne — Xr16) + F(Xr26 — Xr36)s
2.4 Recombination;

2.5 Selection;
Until Generation over;

End

Fig. 4. Pseudocode of DGDE.



Sensors and Materials, Vol. 30, No. 11 (2018) 2507

E i V.,V
Environment So.51, 52, 55 > Wall-Following LR Mobile Robot
Controller
A
Fitness Function DGDE Algorithm

Fig. 5. Mobile robot wall-following control block diagram.

Figure 6 presents the 1.7 x 1.4 m? training environment. In order to allow the mobile robots
to experience various environments, the training environment consists of straight lines, corners,
right-angled corners, and a U curve.

To avoid collision with obstacles and deviation from the wall during the wall-following
control learning process, three terminal conditions are adopted for wall-following control
learning.

1. A larger total moving distance of the mobile robot than the maximum permitted distance
of the training environment indicates that the mobile robot successfully moved in a circular
path in an unknown environment.

2. The mobile robot is defined as having collided with the wall when the measured distance
from any infrared sensor is less than D (i.e., D; is set to 1 cm).

3. The mobile robot is defined as having deviated from the wall when the measured distance of
the sensor S, is greater than D; (i.e., D> is set to 1 cm).

In this study, a fitness function that is a combination of three subfitness functions is
proposed to evaluate the performance of mobile robot wall-following control. The three
subfitness functions are for the total moving distance (SF1), the distance between the robot and
the wall (SF>), and the degree of parallelism between the robot and the wall (SF3).

(1) SF1: When the robot moving distance Rgisance 18 greater than the default value Ry, set

Ruistance = Rs10p- This indicates that the robot has successfully moved in a circular path
in the training environment.

SFi = Rstop - Rdistance 2D

(2) SF>: To maintain a fixed distance between the robot and the wall in the wall-following
process, SF» is defined as the average of Wy(f), where Wy(f) denotes the distance
between the robot and the wall at each time step.

Wy (£)=S5(t) = dyyutf 22)
Tstop
SF, = thTle(t) 23)

stop
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Fig. 6. (Color online) Training environment of mobile robot wall-following control.

(3) SF3: According to the law of cosines, x(¢) is equal to RS> when the robot sensor S is parallel
to the wall, and the angle between the robot and the wall is 90°, as shown in Fig. 7.

x(£)= /RS2 + RS,2 - 2RS,RS,cos(45°) (25)

Here, r is the radius of the robot, and Dy and D, denote the distances between the sensors S}
and S>. SF3is defined as

L,
SF; = 2.5 IRS; = (1)) 26)

stop

The fitness function for evaluating the wall-following learning performance is a combination
of the three subfitness functions (SF, SF», and SF3) and is defined as

_ 1
F(')‘1+(SE+SF2+SF3)- (27)

3.4 Experimental results of wall-following control

In this section, the performance of the proposed DGDE method is compared with those of
other evolutionary algorithms. The initialization parameters of the DGDE algorithm consist of
the number of vectors (NVP), crossover rate (CR), mutation weighting factor (£), generation, and
number of fuzzy hypercubes, as presented in Table 1.

Moreover, different numbers of fuzzy rules are considered in the performance evaluation.
The IT2RFCMAC with six fuzzy hypercubes was more efficient than that with five or seven
fuzzy hypercubes, as shown in Table 2. The number of successful runs represents the number
of times that the robot moved successfully in a circular path in the training environment.
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Fig. 7. (Color online) Definition the degree of parallelism.

Table 1 Table 2
Initial parameters of DGDE. Performance with different numbers of fuzzy hypercubes.
NP CR F Generation  Hypercubes Number of hypercubes
30 0.9 0.5 3000 5,6, and 7 Fitness value 5 6 7
Best 0.920 0.925 0912
Worst 0.853 0.868 0.837
Average 0.889 0.906 0.873
STD 0.017 0.015 0.018
Number of successful runs 10 10 10
Table 3
Performances of various algorithms.
Fitness value Number of
Best Worst  Average  STD  successful runs
DGDE 0.925 0.868 0.906 0.015 10
DE®¥ 0.889 0.835 0.868  0.014 8
JADE®) 0.914 0.861 0.889  0.013 10
Rank-DEC? 0910 0.857 0.878  0.012 10
ABC®@ 0.824 0.774 0.803  0.016 7

Table 3 shows the performance of different algorithms. The proposed DGDE achieved
superior fitness values and more successful runs compared with other algorithms. The paths of
the robot moving with wall-following control using various evolutionary algorithms are shown
in Fig. 8.

4. Cooperative Carrying by Multi-evolutionary Mobile Robots

In this section, we introduce the method of cooperative carrying for mobile robots. The
training environment consists of a leader robot and a follower robot, the distance between the
two robots is set as 15 ¢cm, and a rectangular object is placed on the two robots. During the
cooperative carrying process, the leader explores the front environment and the follower assists
the leader to achieve obstacle avoidance, as shown in Fig. 9.



2510 Sensors and Materials, Vol. 30, No. 11 (2018)

Fig. 8.  (Color online) Paths of the robot moving in the training environment: (a) DGDE, (b) DE, (c) JADE, (d)
Rank-DE, and (e¢) ABC.

Fig. 9. (Color online) Cooperative carrying by two mobile robots.
4.1 Cooperative carrying method of WFC

A dual controller for cooperative carrying by two mobile robots is proposed. A cooperation
controller, which contained five input signals and two output signals, was added for the follower
robot to learn WFC. The inputs are the distances sensed by the follower robot’s sensors (So, Si,
S>, and S3) and the distance Ry between two robots. The outputs are the rotational speeds V7,
and Vi of the two wheels. Figure 10 presents the block diagram of cooperative carrying by two
mobile robots.

The training environment was established with straight lines, smooth curves, continuous
curves, and U-shaped curves, to train the follower’s cooperation controller. Figure 11 shows the
1.7 % 1.4 m? training environment.
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Fig. 10. Structural diagram of cooperative carrying method.

Fig. 11.  (Color online) Training environment for cooperative carrying.

During the cooperative carrying learning process, five terminal conditions are proposed to
prevent collision with obstacles and objects being dropped.

(I) When any of the follower’s sensors detects a distance of less than WD (where WD is equal
to 1 cm), it indicates that the follower robot has collided with the wall.

(2) When the distance detected by the follower’s sensor S> is greater than WD, it shows that the
follower robot deviates from the wall.

(3) When the measured distance between the leader robot and the follower robot (R,) is greater
than WDjs or less than WD4 (wWhere WD3 and WD, are equal to 20 and 10 cm, respectively),
the leader and follower robots are deduced to be too far apart or too close together,
respectively.

(4) When the measured distance of the robot sensor is less than the height R (where Ry, is equal
to 5 cm), the object has been dropped by the robots.

(5) When the measured distance S,y of the sensor is less than WDs or greater than WDg
(where WDs and WDg are equal to 1 and 7.5 cm, respectively), it indicates that the object has
approached the wall or deviated from the wall.

Cooperative carrying by the robots fails during the training and learning process when
the aforementioned conditions are satisfied. A fitness function is proposed to evaluate the
efficiency of the cooperative carrying process.
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F(.) = TStep / Sstop (28)

4.2 Experimental results of the wall-following carrying

The performances of WFC control using our DGDE method and using other methods were
compared. Each method was evaluated 10 times to verify the stability of each algorithm in this
study. The initial parameters of WFC control using the DGDE algorithm are presented in Table 4.

Table 5 shows the performance evaluations of different algorithms. The proposed WFC
control using the DGDE method achieved superior fitness values and more successful runs
compared with other methods. In this study, a training environment was created to verify the
WEC control performance of different learning algorithms and the path of the robot moving
with WFC control using various evolutionary algorithms, as shown in Fig. 12.

4.3 Experimental results of cooperative carrying control

The proposed method is used to verify the performance of navigation control. Two different
test environments were created to test whether the robots successfully complete cooperative
carrying and navigation control. Experimental results for the two test environments are shown
in Fig. 13. The effectiveness of cooperative carrying control was evaluated on the basis of
the average distance (RD) between the two robots and the average distance (4D) between the
follower robot and the wall. If RD is large, the two robots do not remain apart at a suitable
distance during cooperative carrying control, and the object falls easily. On the other hand, if
AD is small or large, it means that the robots pass the curves with poor efficiency and the object
falls easily. Performance evaluation results of cooperative carrying control are shows in Table 6.
The experimental results show that the proposed cooperative carrying control method enables
successful completion of navigation control in an unknown environments.

Table 4
Initial parameters of WFC control.

NP CR F Generation  Hypercubes

30 0.9 0.5 2000 6
Table 5
Fitness value of various algorithms in the test environment.
Fitness value Number of
Best Worst Average STD successes

DGDE 0.859 0.735 0.813 0.028 10
DE®¥ 0.438 0.221 0.358 0.046 5
JADE®? 0.707 0.529 0.590 0.038 8
Rank-DEG? 0.721 0.553 0.643 0.036 8
ABC®Y 0.399 0.242 0.322 0.054 4
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Fig. 12. (Color online) Paths of moving robot with WFC control in the training environment: (a) DGDE, (b) DE, (c)
JADE, (d) Rank-DE, and (¢) ABC.

(b)

Fig. 13. (Color online) Navigation control of cooperative carrying in (a) test environment 1 and (b) test environment 2.

Table 6
Performance evaluation results of cooperative carrying control.

Evaluation items

Algorithm Test environment 1 Test environment 2
RD (cm) AD (cm) RD (cm) AD (cm)
DGDE 15.73 3.78 16.23 3.68

5. Conclusion

We proposed an effective IT2RFCMAC controller for cooperative carrying control in
an unknown environment. The parameters of IT2RFCMAC are trained in an unknown
environment through reinforcement learning. The proposed DGDE learning algorithm
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uses dynamic grouping and local search methods to improve the convergence stability of
the traditional DE method. In addition, the proposed state manager automatically switches
between WFC and TGC during navigation control in cooperative carrying. Experimental
results demonstrated that the control performance of the proposed method is superior to those
of the other methods in WFC, and cooperative carrying control of mobile robots in unknown
environments was successfully accomplished.
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