Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 23, Number 1 (2011)
Copyright(C) MYU K.K.
pp. 21-37
S&M824 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2011.708
Published: January 28, 2011

Modelling of Displacement Method in Surface Plasmon Resonance Sensing [PDF]

Masato Yasuura, Kiyoshi Toko and Takeshi Onodera

(Received May 27, 2010; Accepted August 9, 2010)

Keywords: SPR immunosensor, displacement method, antigen-antibody interaction

Existing methods of detecting explosives have many problems in terms of stability, sensitivity, high selectivity, and rapid sensing for any given situation. In this study, we selected a displacement method using a surface plasmon resonance (SPR) immunosensor, which is one of the ways to overcome these problems. In an SPR displacement immunoassay, the methods to realize a high sensitivity were investigated by experimental findings. However, they were not investigated by theoretical approaches. Hence, we developed a method with a higher sensitivity based on the kinetic theory of this system. The strategy of an SPR displacement immunoassay to realize a high sensitivity was determined using the two-layer model simulation by a theoretical approach. As a result of the simulation, we found that a high sensitivity was realized using a combination of an antigen analogue and an antibody with a small association constant or a combination of an antigen and an antibody with a large association constant. This means that the equilibrium constants affect the sensitivity of an SPR displacement immunoassay, which is one of assays under nonequilibrium conditions. In addition, we investigated the relationship between association equilibrium constants and the sensitivity using conjugates and a hapten to detect 2,4,6-trinitrotoluene (TNT). The result of the experiment supported the theoretical inferences.

Corresponding author: Masato Yasuura


Cite this article
Masato Yasuura, Kiyoshi Toko and Takeshi Onodera, Modelling of Displacement Method in Surface Plasmon Resonance Sensing, Sens. Mater., Vol. 23, No. 1, 2011, p. 21-37.



Forthcoming Regular Issues


Forthcoming Special Issues

Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Data Sensing and Processing Technologies for Smart Community and Smart Life
Guest editor, Tatsuya Yamazaki (Niigata University)
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Special Issue on Advanced Micro/Nanomaterials for Various Sensor Applications (Selected Papers from ICASI 2023)
Guest editor, Sheng-Joue Young (National United University)
Conference website
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.