Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 33, Number 1(2) (2021)
Copyright(C) MYU K.K.
pp. 171-180
S&M2443 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2021.3067
Published: January 22, 2021

Alamethicin Channels as a Signal Transduction Element in an Immobilized Single Giant Unilamellar Vesicle [PDF]

Hiroyuki Fukuda, Masaki Nitta, Misato Sakamoto, Atsushi Shoji, and Masao Sugawara

(Received August 31, 2020; Accepted December 2, 2020)

Keywords: single giant unilamellar vesicle, alamethicin channel, bovine serum albumin, avidin slip

A single giant unilamellar vesicle (GUV) functionalized with an anti-bovine serum albumin (BSA) antibody was immobilized on an avidin slip, and alamethicin channels were embedded as a signal transduction element for creating a channel-based molecular sensing system. The GUV sensor based on the membrane-bound anti-BSA antibody receptor exhibited alamethicin activities that reflected the binding of BSA (an analyte) at the membrane/solution interface. The normalized integrated current at −60 mV was able to be used as a measure of the amount of BSA in a solution. The quantification of BSA at pg/mL level was demonstrated.

Corresponding author: Atsushi Shoji


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Hiroyuki Fukuda, Masaki Nitta, Misato Sakamoto, Atsushi Shoji, and Masao Sugawara, Alamethicin Channels as a Signal Transduction Element in an Immobilized Single Giant Unilamellar Vesicle, Sens. Mater., Vol. 33, No. 1, 2021, p. 171-180.



Forthcoming Regular Issues


Forthcoming Special Issues

Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Data Sensing and Processing Technologies for Smart Community and Smart Life
Guest editor, Tatsuya Yamazaki (Niigata University)
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Special Issue on Advanced Micro/Nanomaterials for Various Sensor Applications (Selected Papers from ICASI 2023)
Guest editor, Sheng-Joue Young (National United University)
Conference website
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.