Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 32, Number 10(1) (2020)
Copyright(C) MYU K.K.
pp. 3157-3167
S&M2330 Research Paper of Special Issue
Published: October 9, 2020

Nighttime Pedestrian Detection Based on Thermal Imaging and Convolutional Neural Networks [PDF]

Yung-Yao Chen, Guan-Yi Li, Sin-Ye Jhong, Ping-Han Chen, Chiung-Cheng Tsai, and Po-Han Chen

(Received February 24, 2020; Accepted June 3, 2020)

Keywords: nighttime pedestrian detection, convolutional neural network, thermal imaging

Pedestrian detection is a high-profile topic in computer vision, in part because it has great relevance to autonomous driving and intelligent surveillance applications. However, most pedestrian detection algorithms perform stably only during the daytime with sufficient illumination. At night, there is still room for improvement and many challenges exist. These challenges include occlusion caused by objects or crowds, and the problem of image background segmentation caused by environments with varying illumination. In this paper, we propose a nighttime thermal image pedestrian detection system, which can be viewed as an extension of the Faster region-based convolutional neural network (R-CNN) method. The proposed system can be used for static surveillance scenarios. First, a part model branch is proposed to realize the learning of partial pedestrian block features. Second, a segmentation branch is incorporated to strengthen the positioning of the pedestrian foreground. Finally, the branches are integrated through the fused loss function to enable joint training and optimization of the detection model. To evaluate the performance of the proposed model, we tested the system with several nighttime surveillance scenes. The experimental results show that the proposed method can effectively deal with the occlusion problem under challenging illumination environments and achieve performance levels superior to those of some state-of-the-art deep-learning pedestrian detection methods.

Corresponding author: Yung-Yao Chen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Yung-Yao Chen, Guan-Yi Li, Sin-Ye Jhong, Ping-Han Chen, Chiung-Cheng Tsai, and Po-Han Chen, Nighttime Pedestrian Detection Based on Thermal Imaging and Convolutional Neural Networks, Sens. Mater., Vol. 32, No. 10, 2020, p. 3157-3167.

Forthcoming Regular Issues

Forthcoming Special Issues

Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (1)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)
Call for paper

Special Issue on New Trends in Smart Sensor Systems
Guest editor, Takahiro Hayashi (Kansai University)
Call for paper

Special Issue on Intelligent Sensing Control Analysis, Optimization and Automation
Guest editor, Cheng-Chi Wang (National Chin-Yi University of Technology)

Special Issue on International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2019 (Bio4Apps 2019)
Guest editor, Hirofumi Nogami and Masaya Miyazaki (Kyushu University)
Conference website
Call for paper

Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (4)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website

Special Issue on Geomatics Technologies for the Realization of Smart Cities (1) and (2)
Guest editor, He Huang and XiangLei Liu (Beijing University of Civil Engineering and Architecture)
Call for paper

Copyright(C) MYU K.K. All Rights Reserved.