Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.
Published in advance: May 16, 2020

Inundation Analysis Method for Urban Mountainous Areas Based on Soil Conservation Service Curve Number (SCS-CN) Model Using Remote Sensing Data [PDF]

Xinyue He, Chao Chen, Yue Liu, and Yanli Chu

(Received January 15, 2020; Accepted April 25, 2020)

Keywords: SCS-CN model, inundation analysis, land use, urban mountain, rainfall-runoff calculation

Flooding and waterlogging are frequent disasters that pose serious threats to the safety of human lives and infrastructure. We propose a method of estimating the inundation area in urban mountainous zones based on the soil conservation service curve number (SCS-CN) model. Remote sensing data are used to localize parameters and ensure model accuracy, and are combined with topographic maps to determine land-use type, slope, and waterlogged ground. Watershed analysis based on the SCS-CN model is performed to obtain rainfall-runoff data. The inundation area is then estimated from the rainfall data, and the spatial and temporal distribution characteristics of the flood inundation area are analyzed from the perspective of land use. Experimental results from a case study in Mingxi, China, verify the effectiveness of this method for the analysis of flood inundation in urban mountainous areas.

Corresponding author: Chao Chen




Forthcoming Regular Issues


Forthcoming Special Issues

Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (1)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)
Call for paper


Special Issue on New Trends in Smart Sensor Systems
Guest editor, Takahiro Hayashi (Kansai University)
Call for paper


Special Issue on Intelligent Sensing Control Analysis, Optimization and Automation
Guest editor, Cheng-Chi Wang (National Chin-Yi University of Technology)


Special Issue on International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2019 (Bio4Apps 2019)
Guest editor, Hirofumi Nogami and Masaya Miyazaki (Kyushu University)
Conference website
Call for paper


Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (4)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website


Special Issue on Geomatics Technologies for the Realization of Smart Cities (1) and (2)
Guest editor, He Huang and XiangLei Liu (Beijing University of Civil Engineering and Architecture)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.