Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 28, Number 3 (2016)
Copyright(C) MYU K.K.
pp. 231-236
S&M1173 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2016.1283
Published: March 30, 2016

Effects of Sintering Temperature on the Response of CuFeTe2 Ceramics to Oxygen Gas [PDF]

Masatoshi Kozaki, Yuta Tokunaga, Yezhi Huang, Hisao Kuriyaki, and Kiyoshi Toko

(Received November 19, 2015; Accepted December 25, 2015)

Keywords: oxygen gas sensor, intercalation, layered material

A new oxygen sensor based on the resistance change caused by oxygen intercalation in the layered compound CuFeTe2 (CFT) was developed. When intercalation occurs, oxygen molecules penetrate into the CFT interlayer, stretching the van der Waals gap and increasing the c-axis resistance. In this study, we prepared ceramic samples from a single crystal using different sintering temperatures. Results show that the sample sintered at 100 ℃ showed the highest oxygen gas response. Moreover we carried out the surface observation of the cross section of each CFT ceramic sample and found that the porosity of the sample increased with decreasing sintering temperature.

Corresponding author: Masatoshi Kozaki


Cite this article
Masatoshi Kozaki, Yuta Tokunaga, Yezhi Huang, Hisao Kuriyaki, and Kiyoshi Toko, Effects of Sintering Temperature on the Response of CuFeTe2 Ceramics to Oxygen Gas, Sens. Mater., Vol. 28, No. 3, 2016, p. 231-236.



Forthcoming Regular Issues


Forthcoming Special Issues

Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Data Sensing and Processing Technologies for Smart Community and Smart Life
Guest editor, Tatsuya Yamazaki (Niigata University)
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Special Issue on Advanced Micro/Nanomaterials for Various Sensor Applications (Selected Papers from ICASI 2023)
Guest editor, Sheng-Joue Young (National United University)
Conference website
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.