Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 28, Number 6 (2016)
Copyright(C) MYU K.K.
pp. 637-647
S&M1219 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2016.1278
Published: June 22, 2016

Device-Free Indoor Localization Based on Data Mining Classification Algorithms [PDF]

Mekuanint Agegnehu Bitew, Rong-Shue Hsiao, Shinn-Jong Bair, Chiu-Ching Tuan, and Hsin-Piao Lin

(Received June 2, 2015; Accepted November 16, 2015)

Keywords: device-free, indoor localization, statistical classifiers, WiFi interference

Indoor localization is used in many applications such as security, health care, location-based services, and social networking. In traditional localization systems, a target person carries a radio device or sensor and the location of this device is taken as the location of the target person. However, there are situations in which a person does not carry a device. In such cases, devicefree localization (DFL) is the best solution. In this paper, we propose a radio frequency (RF)- based DFL system using data mining classification algorithms. ZigBee nodes are deployed at the sides of a rectangular area and the area is divided into square grids. First, a model is developed for each classifier by collecting a received signal strength indicator (RSSI) when a person stands at the center of grids. The RSSI of each RF link is taken as an attribute for classifiers. Second, an online dataset is used to test the trained classifiers. RF links that contribute less for classification are removed from the attribute list. We also analyze the effect of ZigBee and WiFi interference on ZigBee-based DFL systems. Among five data mining classifiers, k-nearest neighbors and support vector machine using sequential minimal optimization achieve a classification accuracy of above 90%.

Corresponding author: Rong-Shue Hsiao


Cite this article
Mekuanint Agegnehu Bitew, Rong-Shue Hsiao, Shinn-Jong Bair, Chiu-Ching Tuan, and Hsin-Piao Lin, Device-Free Indoor Localization Based on Data Mining Classification Algorithms, Sens. Mater., Vol. 28, No. 6, 2016, p. 637-647.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Sensors and Materials: Emerging Investigators in Japan
Guest editor, Tsuyoshi Minami (The University of Tokyo)


Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (2)-1
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)


Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (4)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website


Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (2)-2
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)


Special Issue on New Trends in Robots and Their Applications
Guest editor, Ikuo Yamamoto (Nagasaki University)


Special Issue on Artificial Intelligence in Sensing Technologies and Systems
Guest editor, Prof. Lin Lin (Dalian University of Technology)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.